§ 154.435 SEMI-MEMBRANE TANKS

(a) The design of a semi-membrane tank, the supporting insulation for the tank, and the supporting hull structure for the tank must be specially approved by the Commandant (CG–522).

(b) A semi-membrane tank must be designed to meet:

(1) § 154.425 through § 154.432;

(2) § 154.437 through § 154.440; or

(3) § 154.444 through § 154.449.

§ 154.436 Design vapor pressure.

The P_o of a semi-membrane tank must not exceed 24.5 kPa gauge (3.55 psig) unless special approval by the Commandant (CG–522) allows a P_o between 24.5 kPa gauge (3.55 psig) and 69 kPa gauge (10 psig).

§ 154.437 General.

An independent tank type A must meet §154.438 through §154.440.

§ 154.438 Design vapor pressure.

(a) If the surface of an independent tank type A are mostly flat surfaces, the P_o must not exceed 69 kPa gauge (10 psig).

(b) If the surfaces of an independent tank type A are formed by bodies of revolution, the design calculation of the P_o must be specially approved by the Commandant (CG–522).

§ 154.439 Tank design.

An independent tank type A must meet the deep tank standard of the American Bureau of Shipping published in “Rules for Building and Classing Steel Vessels”, 1981, and must:

(a) Withstand the internal pressure determined under §154.407;
§ 154.450

Independent tank type C and process pressure vessels

(a) Plastic deformation, fatigue life, buckling, and crack propagation resulting from static and dynamic loads on the tank and its support.

(b) A three-dimensional analysis of the stress exerted by the hull on the tank, its support, and its keys.

(c) The response of the tank and its support to the vessel’s motion and acceleration in irregular waves or calculations from a similar vessel.

(d) A tank buckling analysis considering the maximum construction tolerance.

(e) A finite element analysis using the loads determined under §154.406.

(f) A fracture mechanics analysis using the loads determined under §154.406.

(g) The cumulative effects of the fatigue load from the following formula:

\[\sum \frac{n_i}{N_i} + \frac{10^3}{N_j} \leq C_w \]

where:

- \(n_i \) = the number of stress cycles at each stress level during the life of the vessel;
- \(N_i \) = the number of cycles to failure for corresponding stress levels from the Wohler (S-N) curve;
- \(N_j \) = the number of cycles to failure from the fatigue load by loading and unloading the tank; and
- \(C_w \) = 0.5 or less. A \(C_w \) of greater than 0.5 but not exceeding 1.0 may be specially approved by the Commandant (G–MTH).

§ 154.449 Model test.

The following analyzed data of a model test of structural elements for independent tank type B must be submitted to the Commandant (CG–522) for special approval:

(a) Stress concentration factors.

(b) Fatigue life.

§ 154.450 General.

Independent tanks type C and process pressure vessels must be designed to meet the requirements under Part 54 of this chapter, except §54.01–40(b), and:

(a) The calculation under §54.01–18(b)(1) must also include the design loads determined under §154.406;

(b) The calculated tank plating thickness, including any corrosion allowance, must be the minimum thickness without a negative plate tolerance; and

(c) The minimum tank plating thickness must not be less than:

1. 5mm (\(\frac{3}{32} \) in.) for carbon-manganese steel and nickel steel;
2. 3mm (\(\frac{1}{8} \) in.) for austenitic steels; or
3. 7mm (\(\frac{9}{32} \) in.) for aluminum alloys.

(See Appendix A for equivalent stress.)