Coast Guard, DHS

(d) A tank overflow must be identified with the legend “TANK OVERFLOW ALARM” in lettering as specified for the warning sign in §153.955. 

(e) A tank overflow alarm must be audible and visible in that part of the deck where the containment systems are located and at the point where cargo loading is controlled on the tankship. 

(f) The automatic shutdown system or tank overflow alarm must be able to be checked at the tank for proper operation (for example, by electrically simulating an overfill at the tank gauge connection). 

(g) In this section, “independent” as applied to two systems means that one system will operate with a failure of any part of the other system except high level power sources and electrical feeder panels. Conduit need not be independent; the control wiring for several independent systems may be carried in a single conduit. 

[CGD 81–078, 50 FR 21173, May 22, 1985]

§ 153.409 High level alarms. 

When Table 1 refers to this section or requires a cargo to have a closed gauging system, the cargo’s containment system must have a high level alarm: 

(a) That gives an audible and visual alarm before the tank fills to 97 percent of its capacity; 

(b) That can be seen and heard where cargo transfer is controlled and on the open deck; 

(c) Whose operation can be checked prior to each loading; and 

(d) That must be marked as described in §153.408(c)(6) with the legend “HIGH LEVEL ALARM.” 


§ 153.430 Heat transfer systems; general. 

Each cargo cooling system required by this part and each cargo heating system must: 

(a) Meet the standards of Subchapters F (Marine Engineering) and J (Electrical Engineering) of this chapter; 

(b) Have valving that enables the system to be separated from all other cooling and heating systems; and 

(c) Allow manual regulation of the system’s heat transfer rate. 


§ 153.432 Cooling systems. 

(a) Each cargo cooling system must have an equivalent standby unit that is installed and that can be placed in operation immediately after failure of the primary cooling system. 

(b) Each tankship that has a cargo tank with a required cooling system must have a manual that contains: 

(1) A piping diagram for the cooling system; and 

(2) Instructions for changing over to the standby system described in paragraph (a) of this section. 


§ 153.434 Heat transfer coils within a tank. 

When a cargo tank contains any quantity of cargo, a cargo cooling or heating system having coils within the tank must keep the heat transfer fluid at a pressure greater than the pressure exerted on the heating or cooling system by the cargo. 

[CGD 78–128, 47 FR 21209, May 17, 1982]

§ 153.436 Heat transfer fluids: compatibility with cargo. 

A heat transfer fluid separated from the cargo by only one wall (for example, the heat transfer fluid in a coil within a tank) must be compatible with the cargo under the standards prescribed for compatibility between two cargoes in Part 150 of this chapter. 

[CGD 81–078, 50 FR 21174, May 22, 1985]

§ 153.438 Cargo pressure or temperature alarms required. 

(a) Each refrigerated tank must have: 

(1) An alarm that operates when the cargo’s pressure exceeds the vapor pressure described in §153.371(b); or 

(2) An alarm that operates when the cargo’s temperature exceeds the steady
§ 153.440 Cargo temperature sensors.

(a) Except as prescribed in paragraph (c) of this section, when Table 1 refers to this section, the containment system must meet the following requirements:

(1) A heated or refrigerated cargo tank must have a remote reading thermometer sensing the temperature of the cargo at the bottom of the tank.

(2) A refrigerated tank must have a remote reading second thermometer near the top of the tank and below the maximum liquid level allowed by §153.981.

(3) Unless waived under §153.491(a), a cargo tank endorsed to carry a Category A, B, or C NLS cargo must have a thermometer whose temperature reading is no greater than the temperature of the cargo at a level above the tank bottom at least one-eighth but no more than one-half the height of the tank if the cargo is—

(i) A Category A NLS or a Category B NLS having a viscosity of at least 25 mPa.s at 20 °C;

(ii) A Category C NLS having a viscosity of at least 60 mPa.s at 20 °C; or

(iii) A Category A, B, or C NLS that has a melting point greater than 0 °C.

(b) A readout for each remote thermometer required by this section must be at the point where cargo transfer is controlled.

(c) A portable thermometer may be substituted for the equipment required in paragraphs (a) and (b) of this section if—

(1) Table 1 allows open gauging with the cargo; or

(2) Table 1 allows restricted gauging with the cargo, and the portable thermometer is designed to be used through the containment system’s restricted gauging system.


§ 153.460 Fire protection systems.

Each self-propelled ship and each manned non-self-propelled ship must meet the following:

(a) With the exception of the vent riser, each part of a cargo containment system exposed on the weatherdeck must be covered by the fire protection system listed beside the cargo in Table 1 and described in the footnotes to Table 1.

(b) The Commandant (CG–522) approves the substitution of a dry chemical (D) type fire protection system for an A or B type on a case by case basis.

(c) A fire protection system required by this part must meet part 34 of this chapter or be specifically approved by the Commandant (CG–522).


§ 153.461 Electrical bonding of independent tanks.

An independent metallic cargo tank that carries a flammable or combustible cargo must be electrically bonded to the tankship’s hull.

§ 153.462 Static discharges from inert gas systems.

An inert gas system on a tank that carries a flammable or combustible cargo must not create static arcing as the inert gas is injected into the tank.

§ 153.463 Vent system discharges.

The discharge of a venting system must be at least 10 m (approx. 32.8 ft) from an ignition source if:

(a) The cargo tank is endorsed to carry a flammable or combustible cargo; and

(b) Table 1 requires the cargo to have a PV venting system.