- (a) By 180 days after your final compliance date, you must meet two limits:
- (1) The opacity limit is 10 percent (6-minute average) for air curtain incinerators that can combust at least 35 tons per day of municipal solid waste and no more than 250 tons per day of municipal solid waste.
- (2) The opacity limit is 35 percent (6-minute average) during the startup period that is within the first 30 minutes of operation.
- (b) Except during malfunctions, the requirements of this subpart apply at all times. Each malfunction must not exceed 3 hours.

§ 60.1925 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

- (a) Use EPA Reference Method 9 in appendix A of this part to determine compliance with the opacity limit.
- (b) Conduct an initial test for opacity as specified in § 60.8.
- (c) After the initial test for opacity, conduct annual tests no more than 13 calendar months following the date of your previous test.

§ 60.1930 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100 percent vard waste?

(a) Provide a notice of construction that includes four items:

- (1) Your intent to construct the air curtain incinerator.
 - (2) Your planned initial startup date.
- (3) Types of fuels you plan to combust in your air curtain incinerator.
- (4) The capacity of your incinerator, including supporting capacity calculations, as specified in §60.1935(d) and (e).
- (b) Keep records of results of all opacity tests onsite in either paper copy or electronic format unless the Administrator approves another format.
- (c) Keep all records for each incinerator for at least 5 years.
- (d) Make all records available for submittal to the Administrator or for onsite review by an inspector.
- (e) Submit the results (each 6-minute average) of the opacity tests by February 1 of the year following the year of the opacity emission test.
- (f) Submit reports as a paper copy on or before the applicable submittal date. If the Administrator agrees, you may submit reports on electronic media.
- (g) If the Administrator agrees, you may change the annual reporting dates (see §60.19(c)).
- (h) Keep a copy of all reports onsite for a period of 5 years.

EQUATIONS

§ 60.1935 What equations must I use?

(a) Concentration correction to 7 percent oxygen. Correct any pollutant concentration to 7 percent oxygen using equation 1 of this section:

$$C_{7\%} = C_{unc} * (13.9) * (1/(20.9 - CO_2))$$
 (Eq. 1)

Where:

 $C_{7\%}$ = concentration corrected to 7 percent oxygen

 C_{unc} = uncorrected pollutant concentration. CO_2 = concentration of oxygen (percent).

(b) Percent reduction in potential mercury emissions. Calculate the percent reduction in potential mercury emissions (${}^{\circ}P_{Hg}$) using equation 2 of this section:

$$%P_{Hg} = (E_i - E_o) * (100 / E_i)$$
 (Eq. 2)

§ 60.1935

Where:

 $%P_{Hg}$ = percent reduction of potential mercury emissions

 $E_{\rm i}$ = mercury emission concentration as measured at the air pollution control device inlet, corrected to 7 percent oxygen, dry basis

 $E_{\rm o}=$ mercury emission concentration as measured at the air pollution control de-

vice outlet, corrected to 7 percent oxygen, dry basis

(c) Percent reduction in potential hydrogen chloride emissions. Calculate the percent reduction in potential hydrogen chloride emissions (${\rm \%P_{HC1}}$) using equation 3 of this section:

$$%P_{HCI} = (E_i - E_o) * (100 / E_i)$$
 (Eq. 3)

Where:

%P_{HC1} = percent reduction of the potential hydrogen chloride emissions

E_i = hydrogen chloride emission concentration as measured at the air pollution control device inlet, corrected to 7 percent oxygen, dry basis

 $\rm E_o=hydrogen$ chloride emission concentration as measured at the air pollution control device outlet, corrected to 7 percent oxygen, dry basis

(d) Capacity of a municipal waste combustion unit. For a municipal waste combustion unit that can operate continuously for 24-hour periods, calculate the municipal waste combustion unit capacity based on 24 hours of operation at the maximum charge rate. To determine the maximum charge rate, use one of two methods:

(1) For municipal waste combustion units with a design based on heat input capacity, calculate the maximum charging rate based on the maximum heat input capacity and one of two heating values:

(i) If your municipal waste combustion unit combusts refuse-derived fuel, use a heating value of 12,800 kilojoules per kilogram (5,500 British thermal units per pound).

(ii) If your municipal waste combustion unit combusts municipal solid waste, use a heating value of 10,500 kilojoules per kilogram (4,500 British thermal units per pound).

(2) For municipal waste combustion units with a design not based on heat input capacity, use the maximum designed charging rate.

(e) Capacity of a batch municipal waste combustion unit. Calculate the capacity of a batch municipal waste combustion unit as the maximum design amount of municipal solid waste they can charge

per batch multiplied by the maximum number of batches they can process in 24 hours. Calculate the maximum number of batches by dividing 24 by the number of hours needed to process one batch. Retain fractional batches in the calculation. For example, if one batch requires 16 hours, the municipal waste combustion unit can combust 24/16, or 1.5 batches, in 24 hours.

(f) Quarterly carbon usage. If you use activated carbon to comply with the dioxins/furans or mercury limits, calculate the required quarterly usage of carbon using equation 4 of this section for plant basis or equation 5 of this section for unit basis:

(1) Plant basis.

$$C = \sum_{i=1}^{n} f_i * h_i$$
 (Eq. 4)

Where:

C = required quarterly carbon usage for the plant in kilograms (or pounds).

f_i = required carbon feed rate for the municipal waste combustion unit in kilograms (or pounds) per hour. That is the average carbon feed rate during the most recent mercury or dioxins/furans stack tests (whichever has a higher feed rate).

(whichever has a higher feet face).

h_i = number of hours the municipal waste combustion unit was in operation during the calendar quarter (hours).

n = number of municipal waste combustion units, i, located at your plant.

(2) Unit basis.

$$C = f * h$$
 (Eq. 5)

Where:

C = required quarterly carbon usage for the unit in kilograms (or pounds).

f = required carbon feed rate for the municipal waste combustion unit in kilograms (or pounds) per hour. That is the average carbon feed rate during the most recent

Environmental Protection Agency

mercury or dioxins/furans stack tests (whichever has a higher feed rate).

h = number of hours the municipal waste combustion unit was in operation during the calendar quarter (hours).

DEFINITIONS

§ 60.1940 What definitions must know?

Terms used but not defined in this section are defined in the CAA and in subparts A and B of this part.

Administrator means the Administrator of the U.S. Environmental Protection Agency or his/her authorized representative or the Administrator of a State Air Pollution Control Agency.

Air curtain incinerator means an incinerator that operates by forcefully projecting a curtain of air across an open chamber or pit in which combustion occurs. Incinerators of that type can be constructed above or below ground and with or without refractory walls and floor.

Batch municipal waste combustion unit means a municipal waste combustion unit designed so it cannot combust municipal solid waste continuously 24 hours per day because the design does not allow waste to be fed to the unit or ash to be removed during combustion.

Calendar quarter means three consecutive months (nonoverlapping) beginning on: January 1, April 1, July 1, or October 1.

Calendar year means 365 (or 366 consecutive days in leap years) consecutive days starting on January 1 and ending on December 31.

Chief facility operator means the person in direct charge and control of the operation of a municipal waste combustion unit. That person is responsible for daily onsite supervision, technical direction, management, and overall performance of the municipal waste combustion unit.

Class I units mean small municipal waste combustion units subject to this subpart that are located at municipal waste combustion plants with an aggregate plant combustion capacity greater than 250 tons per day of municipal solid waste. See the definition in this section of "municipal waste combustion plant capacity" for specification of which units at a plant site are

included in the aggregate capacity calculation.

Class II units mean small municipal combustion units subject to this subpart that are located at municipal waste combustion plants with aggregate plant combustion capacity less than or equal to 250 tons per day of municipal solid waste. See the definition in this section of "municipal waste combustion plant capacity" for specification of which units at a plant site are included in the aggregate capacity calculation.

Clean wood means untreated wood or untreated wood products including clean untreated lumber, tree stumps (whole or chipped), and tree limbs (whole or chipped). Clean wood does not include two items:

- (1) "Yard waste," which is defined elsewhere in this section.
- (2) Construction, renovation, or demolition wastes (for example, railroad ties and telephone poles) that are exempt from the definition of "municipal solid waste" in this section.

Co-fired combustion unit means a unit that combusts municipal solid waste with nonmunicipal solid waste fuel (for example, coal, industrial process waste). To be considered a co-fired combustion unit, the unit must be subject to a federally enforceable permit that limits it to combusting a fuel feed stream which is 30 percent or less (by weight) municipal solid waste as measured each calendar quarter.

Continuous burning means the continuous, semicontinuous, or batch feeding of municipal solid waste to dispose of the waste, produce energy, or provide heat to the combustion system in preparation for waste disposal or energy production. Continuous burning does not mean the use of municipal solid waste solely to thermally protect the grate or hearth during the startup period when municipal solid waste is not fed to the grate or hearth.

Continuous emission monitoring system means a monitoring system that continuously measures the emissions of a pollutant from a municipal waste combustion unit.

Dioxins/furans mean tetra-through octachlorinated dibenzo-p-dioxins and dibenzofurans.