and inspecting all your production vehicles or engines and make the action routine for all the vehicles or engines in the engine family.

(2) This subpart otherwise specifically allows your action.

(3) We approve your action in advance.

(c) Malfunction. If a vehicle or engine malfunction prevents further emission testing, ask us to approve your decision to either repair it or delete it from the test sequence.

(d) Setting adjustable parameters. Before any test, we may require you to adjust any adjustable parameter to any setting within its physically adjustable range.

(1) We may require you to adjust idle speed outside the physically adjustable range as needed, but only until the vehicle or engine has stabilized emission levels (see paragraph (e) of this section). We may ask you for information needed to establish an alternate minimum idle speed.

(2) We may specify adjustments within the physically adjustable range by considering their effect on emission levels. We may also consider how likely it is that someone will make such an adjustment with in-use vehicles.

(3) We may specify an air-fuel ratio within the adjustable range specified in §1051.115(d).

(e) Stabilizing emission levels. Before you test production-line vehicles or engines, you may operate the vehicle or engine to stabilize the emission levels. Using good engineering judgment, operate your vehicles or engines in a way that represents the way they will be used. You may operate each vehicle or engine for no more than the greater of two periods:

(1) 50 hours or 500 kilometers.

(2) The number of hours or kilometers you operated the emission-data vehicle used for certifying the engine family (see 40 CFR part 1065, subpart E, or the applicable regulations governing how you should prepare your test vehicle or engine).

(f) Damage during shipment. If shipping a vehicle or engine to a remote facility for production-line testing makes necessary an adjustment or repair, you must wait until after the initial emission test to do this work. We may waive this requirement if the test would be impossible or unsafe, or if it would permanently damage the vehicle or engine. Report to us, in your written report under §1051.345, all adjustments or repairs you make on test vehicles or engines before each test.

(g) Retesting after invalid tests. You may retest a vehicle or engine if you determine an emission test is invalid under subpart F of this part. Explain in your written report reasons for invalidating any test and the emission results from all tests. If we determine that you improperly invalidated a test, we may require you to ask for our approval for future testing before substituting results of the new tests for invalid ones.

§1051.310 How must I select vehicles or engines for production-line testing?

(a) Test engines from each engine family as described in this section based on test periods, as follows:

(1) For engine families with projected U.S.-directed production volume of at least 1,600, the test periods are consecutive quarters (3 months). However, if your annual production period is less than 12 months long, you may take the following alternative approach to define quarterly test periods:

(i) If your annual production period is 120 days or less, the whole model year constitutes a single test period.

(ii) If your annual production period is 121 to 210 days, divide the annual production period evenly into two test periods.

(iii) If your annual production period is 211 to 300 days, divide the annual production period evenly into three test periods.

(iv) If your annual production period is 301 days or longer, divide the annual production period evenly into four test periods.

(b) Early in each test period, randomly select and test an engine from
§ 1051.310

the end of the assembly line for each engine family.

(1) In the first test period for newly certified engines, randomly select and test one more engine. Then, calculate the required sample size for the model year as described in paragraph (c) of this section.

(2) In later test periods of the same model year, combine the new test result with all previous testing in the model year. Then, calculate the required sample size for the model year as described in paragraph (c) of this section.

(3) In the first test period for engine families relying on previously submitted test data, combine the new test result with the last test result from the previous model year. Then, calculate the required sample size for the model year as described in paragraph (c) of this section. Use the last test result from the previous model year only for this first calculation. For all subsequent calculations, use only results from the current model year.

(c) Calculate the required sample size for each engine family. Separately calculate this figure for HC, NOX (or HC + NOx), and CO. The required sample size is the greater of these calculated values. Use the following equation:

\[
N = \left[\frac{(t_{95} \cdot \sigma)}{(x - \text{STD})} \right]^2 + 1
\]

Where:

\(N \) = Required sample size for the model year.
\(t_{95} \) = 95% confidence coefficient, which depends on the number of tests completed, \(n \), as specified in the table in paragraph (c)(1) of this section. It defines 95% confidence intervals for a one-tail distribution.
\(\sigma \) = Test sample standard deviation (see paragraph (c)(2) of this section).
\(x \) = Mean of emission test results of the sample.
\(\text{STD} \) = Emission standard (or family emission limit, if applicable).

(1) Determine the 95% confidence coefficient, \(t_{95} \), from the following table:

<table>
<thead>
<tr>
<th>(n)</th>
<th>(t_{95})</th>
<th>(n)</th>
<th>(t_{95})</th>
<th>(n)</th>
<th>(t_{95})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6.31</td>
<td>12</td>
<td>1.80</td>
<td>22</td>
<td>1.72</td>
</tr>
<tr>
<td>3</td>
<td>2.92</td>
<td>13</td>
<td>1.78</td>
<td>23</td>
<td>1.72</td>
</tr>
<tr>
<td>4</td>
<td>2.35</td>
<td>14</td>
<td>1.77</td>
<td>24</td>
<td>1.71</td>
</tr>
<tr>
<td>5</td>
<td>2.13</td>
<td>15</td>
<td>1.76</td>
<td>25</td>
<td>1.71</td>
</tr>
<tr>
<td>6</td>
<td>2.02</td>
<td>16</td>
<td>1.75</td>
<td>26</td>
<td>1.71</td>
</tr>
<tr>
<td>7</td>
<td>1.94</td>
<td>17</td>
<td>1.75</td>
<td>27</td>
<td>1.71</td>
</tr>
<tr>
<td>8</td>
<td>1.89</td>
<td>18</td>
<td>1.74</td>
<td>28</td>
<td>1.70</td>
</tr>
<tr>
<td>9</td>
<td>1.86</td>
<td>19</td>
<td>1.73</td>
<td>29</td>
<td>1.70</td>
</tr>
<tr>
<td>10</td>
<td>1.83</td>
<td>20</td>
<td>1.73</td>
<td>30</td>
<td>1.70</td>
</tr>
<tr>
<td>11</td>
<td>1.81</td>
<td>21</td>
<td>1.72</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(2) Calculate the standard deviation, \(\sigma \), for the test sample using the following formula:

\[
\sigma = \sqrt{\frac{\sum (X_i - x)^2}{(n - 1)}}
\]

Where:

\(X_i \) = Emission test result for an individual vehicle or engine.
\(n \) = The number of tests completed in an engine family.

(d) Use final deteriorated test results to calculate the variables in the equations in paragraph (c) of this section (see §1051.315(a)).

(e) After each new test, recalculate the required sample size using the updated mean values, standard deviations, and the appropriate 95-percent confidence coefficient.

(f) Distribute the remaining tests evenly throughout the rest of the year. You may need to adjust your schedule for selecting vehicles or engines if the required sample size changes. If your
Environmental Protection Agency

§ 1051.315 How do I know when my engine family fails the production-line testing requirements?

This section describes the pass-fail criteria for the production-line testing requirements. We apply these criteria on an engine family basis. See § 1051.320 for the requirements that apply to individual vehicles or engines that fail a production-line test.

(a) Calculate your test results. Round them to the number of decimal places in the emission standard expressed to one more decimal place.

(1) Initial and final test results. Calculate and round the test results for each vehicle or engine. If you do several tests on a vehicle or engine, calculate the initial results for each test, then add all the test results together and divide by the number of tests. Round this final calculated value for the final test results on that vehicle or engine.

(2) Final deteriorated test results. Apply the deterioration factor for the engine family to the final test results (see § 1051.240(c)).

(3) Round deteriorated test results. Round the results to the number of decimal places in the emission standard expressed to one more decimal place.

(b) Construct the following CumSum Equation for each engine family for HC, NO\textsubscript{X} (HC + NO\textsubscript{X}), and CO emissions:

\[C_i = \text{Max} [0 \text{ or } C_{i-1} + X_i - (STD + 0.25 \times \sigma)] \]

Where:

- \(C_i \) = The current CumSum statistic.
- \(C_{i-1} \) = The previous CumSum statistic. For the first test, the CumSum statistic is 0 (i.e., \(C_1 = 0 \)).
- \(X_i \) = The current emission test result for an individual vehicle or engine.
- \(STD \) = Emission standard (or family emission limit, if applicable).

(c) Use final deteriorated test results to calculate the variables in the equation in paragraph (b) of this section (see § 1051.315(a)).

(d) After each new test, recalculate the CumSum statistic.

(e) If you test more than the required number of vehicles or engines, include the results from these additional tests in the CumSum Equation.