§ 230.31 good quality water, spawning and maturation areas, nesting areas, protective cover, adequate and reliable food supply, and resting areas for migratory species. Each of these elements can be adversely affected by changes in either the normal water conditions for clarity, chemical content, nutrient balance, dissolved oxygen, pH, temperature, salinity, current patterns, circulation and fluctuation, or the physical removal of habitat; and - (3) Facilitating incompatible activities. - (c) Where consultation with the Secretary of the Interior occurs under section 7 of the Endangered Species Act, the conclusions of the Secretary concerning the impact(s) of the discharge on threatened and endangered species and their habitat shall be considered final. # § 230.31 Fish, crustaceans, mollusks, and other aquatic organisms in the food web. - (a) Aquatic organisms in the food web include, but are not limited to, finfish, crustaceans, mollusks, insects, annelids, planktonic organisms, and the plants and animals on which they feed and depend upon for their needs. All forms and life stages of an organism, throughout its geographic range, are included in this category. - (b) Possible loss of values: The discharge of dredged or fill material can variously affect populations of fish, crustaceans, mollusks and other food web organisms through the release of contaminants which adversely affect adults, juveniles, larvae, or eggs, or result in the establishment or proliferation of an undesirable competitive species of plant or animal at the expense of the desired resident species. Suspended particulates settling on attached or buried eggs can smother the eggs by limiting or sealing off their exposure to oxygenated water. Discharge of dredged and fill material may result in the debilitation or death of sedentary organisms by smothering, exposure to chemical contaminants in dissolved or suspended form, exposure to high levels of suspended particulates, reduction in food supply, or alteration of the substrate upon which they are dependent. Mollusks are particularly sensitive to the discharge of material during periods of reproduction and growth and development due primarily to their limited mobility. They can be rendered unfit for human consumption by tainting, by production and accumulation of toxins, or by ingestion and retention of pathogenic organisms, viruses, heavy metals or persistent synthetic organic chemicals. The discharge of dredged or fill material can redirect, delay, or stop the reproductive and feeding movements of some species of fish and crustacea, thus preventing their aggregation in accustomed places such as spawning or nursery grounds and potentially leading to reduced populations. Reduction of detrital feeding species or other representatives of lower trophic levels can impair the flow of energy from primary consumers to higher trophic levels. The reduction or potential elimination of food chain organism populations decreases the overall productivity and nutrient export capability of the ecosystem. ## § 230.32 Other wildlife. - (a) Wildlife associated with aquatic ecosystems are resident and transient mammals, birds, reptiles, and amphibians. - (b) Possible loss of values: The discharge of dredged or fill material can result in the loss or change of breeding and nesting areas, escape cover, travel corridors, and preferred food sources for resident and transient wildlife species associated with the aquatic ecosystem. These adverse impacts upon wildlife habitat may result from changes in water levels, water flow and circulation, salinity, chemical content, and substrate characteristics and elevation. Increased water turbidity can adversely affect wildlife species which rely upon sight to feed, and disrupt the respiration and feeding of certain aquatic wildlife and food chain organisms. The availability of contaminants from the discharge of dredged or fill material may lead to the bioaccumulation of such contaminants in wildlife. Changes in such physical and chemical factors of the environment ## **Environmental Protection Agency** may favor the introduction of undesirable plant and animal species at the expense of resident species and communities. In some aquatic environments lowering plant and animal species diversity may disrupt the normal functions of the ecosystem and lead to reductions in overall biological productivity. NOTE: Possible actions to minimize adverse impacts regarding characteristics of biological components of the aquatic ecosystem can be found in subpart H. # Subpart E—Potential Impacts on Special Aquatic Sites NOTE: The impacts described in this subpart should be considered in making the factual determinations and the findings of compliance or non-compliance in subpart B. The definition of special aquatic sites is found in $\S 230.3(q-1)$. # $\S 230.40$ Sanctuaries and refuges. - (a) Sanctuaries and refuges consist of areas designated under State and Federal laws or local ordinances to be managed principally for the preservation and use of fish and wildlife resources. - (b) Possible loss of values: Sanctuaries and refuges may be affected by discharges of dredged or fill material which will: - (1) Disrupt the breeding, spawning, migratory movements or other critical life requirements of resident or transient fish and wildlife resources; - (2) Create unplanned, easy and incompatible human access to remote aquatic areas; - (3) Create the need for frequent maintenance activity; - (4) Result in the establishment of undesirable competitive species of plants and animals; - (5) Change the balance of water and land areas needed to provide cover, food, and other fish and wildlife habitat requirements in a way that modifies sanctuary or refuge management practices; - (6) Result in any of the other adverse impacts discussed in subparts C and D as they relate to a particular sanctuary or refuge. #### § 230.41 Wetlands. - (a)(1) Wetlands consist of areas that are inundated or saturated by surface or ground water at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. - (2) Where wetlands are adjacent to open water, they generally constitute the transition to upland. The margin between wetland and open water can best be established by specialists familiar with the local environment, particularly where emergent vegetation merges with submerged vegetation over a broad area in such places as the lateral margins of open water, headwaters, rainwater catch basins, and groundwater seeps. The landward margin of wetlands also can best be identified by specialists familiar with the local environment when vegetation from the two regions merges over a broad area. - (3) Wetland vegetation consists of plants that require saturated soils to survive (obligate wetland plants) as well as plants, including certain trees, that gain a competitive advantage over others because they can tolerate prolonged wet soil conditions and their competitors cannot. In addition to plant populations and communities, wetlands are delimited by hydrological and physical characteristics of the environment. These characteristics should be considered when information about them is needed to supplement information available about vegetation, or where wetland vegetation has been removed or is dormant. - (b) Possible loss of values: The discharge of dredged or fill material in wetlands is likely to damage or destroy habitat and adversely affect the biological productivity of wetlands ecosystems by smothering, by dewatering, by permanently flooding, or by altering substrate elevation or periodicity of water movement. The addition of dredged or fill material may destroy wetland vegetation or result in advancement of succession to dry land vancement of succession to dry land vancement exchange by a reduction of the system's productivity, or by altering