Environmental Protection Agency

and the limit for that radionuclide as determined from Table 1 and Notes 1 through 5. The sum of such ratios for all the radionuclides in the mixture may not exceed one with regard to §191.13(a)(1) and may not exceed ten with regard to §191.13(a)(2).

For example, if radionuclides A, B, and C are projected to be released in amounts \(Q_a \), \(Q_b \), and \(Q_c \), and if the applicable Release Limits are \(RL_a \), \(RL_b \), and \(RL_c \), then the cumulative releases over 10,000 years shall be limited so that the following relationship exists:

\[
\frac{Q_a}{RL_a} + \frac{Q_b}{RL_b} + \frac{Q_c}{RL_c} \leq 1
\]

APPENDIX B TO PART 191—CALCULATION OF ANNUAL COMMITTED EFFECTIVE DOSE

I. Equivalent Dose

The calculation of the committed effective dose (CED) begins with the determination of the equivalent dose, \(H_T \), to a tissue or organ, \(T \), listed in Table B.2 below by using the equation:

\[
H_T = \sum_{\text{R}} D_{\text{T-R}} \cdot w_T
\]

where \(D_{\text{T-R}} \) is the absorbed dose in rads (one gray, an SI unit, equals 100 rads) averaged over the tissue or organ, \(T \), due to radiation type, \(R \), and \(w_T \) is the radiation weighting factor which is given in Table B.1 below. The unit of equivalent dose is the rem (sievert, in SI units).

TABLE B.1—RADIATION WEIGHTING FACTORS, \(w_R \)

<table>
<thead>
<tr>
<th>Radiation type and energy range</th>
<th>(w_R) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protons, all energies</td>
<td>1</td>
</tr>
<tr>
<td>Neutrons, energy < 10 keV</td>
<td>1</td>
</tr>
<tr>
<td>10 keV to 100 keV</td>
<td>5</td>
</tr>
<tr>
<td>>100 keV to 2 MeV</td>
<td>20</td>
</tr>
<tr>
<td>>2 MeV to 20 MeV</td>
<td>10</td>
</tr>
<tr>
<td>>20 MeV</td>
<td>5</td>
</tr>
<tr>
<td>Alpha particles, fission fragments, heavy nuclei</td>
<td>20</td>
</tr>
</tbody>
</table>

1 All values relate to the radiation incident on the body or, for internal sources, emitted from the source.

2 See paragraph A14 in ICRP Publication 60 for the choice of values for other radiation types and energies not in the table.

II. Effective Dose

The next step is the calculation of the effective dose, \(E \). The probability of occurrence of a stochastic effect in a tissue or organ is assumed to be proportional to the equivalent dose in the tissue or organ. The constant of proportionality differs for the various tissues of the body, but in assessing health detriment the total risk is required. This is taken into account using the tissue weighting factors, \(w_T \) in Table B.2, which represent the proportion of the stochastic risk resulting from irradiation of the tissue or organ to the total risk when the whole body is irradiated uniformly and \(H_T \) is the equivalent dose in the tissue or organ, \(T \), in the equation:

\[
E = \sum w_T \cdot H_T
\]

TABLE B.2—TISSUE WEIGHTING FACTORS, \(w_T \)

<table>
<thead>
<tr>
<th>Tissue or organ</th>
<th>(w_T) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gonads</td>
<td>0.25</td>
</tr>
<tr>
<td>Breast</td>
<td>0.15</td>
</tr>
<tr>
<td>Red bone marrow</td>
<td>0.12</td>
</tr>
<tr>
<td>Lung</td>
<td>0.12</td>
</tr>
<tr>
<td>Thyroid</td>
<td>0.03</td>
</tr>
<tr>
<td>Bone surfaces</td>
<td>0.03</td>
</tr>
<tr>
<td>Remainder</td>
<td>0.30</td>
</tr>
</tbody>
</table>

1 The values are considered to be appropriate for protection for individuals of both sexes and all ages.

2 For purposes of calculation, the remainder is comprised of the five tissues or organs not specifically listed in Table B.2 that receive the highest dose equivalents; a weighting factor of 0.06 is applied to each of them, including the various sections of the gastrointestinal tract which are treated as separate organs. This covers all tissues and organs except the hands and forearms, the feet and ankles, the skin and the lens of the eye. The excepted tissues and organs should be excluded from the computation of \(H_T \).

III. Annual Committed Tissue or Organ Equivalent Dose

For internal irradiation from incorporated radionuclides, the total absorbed dose will be spread out in time, being gradually delivered as the radionuclide decays. The time distribution of the absorbed dose rate will vary with the radionuclide, its form, the mode of intake and the tissue within which it is incorporated. To take account of this distribution the quantity committed equivalent dose, \(H_T(t) \) where \(t \) is the integration time in years following an intake over any particular year, is used and is the integral over time of the equivalent dose rate in a particular tissue or organ that will be received by an individual following an intake of radioactive material into the body. The time period, \(t \), is taken as 50 years as an average time of exposure following intake:

\[
H_T(t) = \int_0^{50} H_T(t) dt
\]

for a single intake of activity at time \(t_0 \) where \(H_T(t) \) is the relevant equivalent-dose rate in a tissue or organ at time \(t \). For the purposes of this part, the previously mentioned single intake may be considered to be an annual intake.
IV. Annual Committed Effective Dose

If the committed equivalent doses to the individual tissues or organs resulting from an annual intake are multiplied by the
appropriate weighting factors, \(w_t \), and then summed, the result will be the annual committed effective dose, \(E(t) \):

\[
E(t) = \sum_{T} w_T \cdot H_T(t).
\]

[58 FR 66415, Dec. 20, 1993]

APPENDIX C TO PART 191—GUIDANCE FOR IMPLEMENTATION OF SUBPART B

[NOTE: The supplemental information in this appendix is not an integral part of 40 CFR part 191. Therefore, the implementing agencies are not bound to follow this guidance. However, it is included because it describes the Agency’s assumptions regarding the implementation of subpart B. This appendix will appear in the Code of Federal Regulations.]

The Agency believes that the implementing agencies must determine compliance with §§191.13, 191.15, and 191.16 of subpart B by evaluating long-term predictions of disposal system performance. Determining compliance with §191.13 will also involve predicting the likelihood of events and processes that may disturb the disposal system. In making these various predictions, it will be appropriate for the implementing agencies to make use of rather complex computational models, analytical theories, and prevalent expert judgment relevant to the numerical predictions. Substantial uncertainties are likely to be encountered in making these predictions. In fact, sole reliance on these numerical predictions to determine compliance may not be appropriate; the implementing agencies may choose to supplement such predictions with qualitative judgments as well. Because the procedures for determining compliance with subpart B have not been formulated and tested yet, this appendix to the rule indicates the Agency’s assumptions regarding certain issues that may arise when implementing §§191.13, 191.15, and 191.16.

Most of this guidance applies to any type of disposal system for the wastes covered by this rule. However, several sections apply only to disposal in mined geologic repositories and would be inappropriate for other types of disposal systems.

Consideration of Total Disposal System. When predicting disposal system performance, the Agency assumes that reasonable projections of the protection expected from all of the engineered and natural barriers of a disposal system will be considered. Portions of the disposal system should not be disregarded, even if projected performance is uncertain, except for portions of the system that make negligible contributions to the overall isolation provided by the disposal system.

Scope of Performance Assessments. Section 191.13 requires the implementing agencies to evaluate compliance through performance assessments as defined in §191.12(q). The Agency assumes that such performance assessments need not consider categories of events or processes that are estimated to have less than one chance in 10,000 of occurring per year. Furthermore, the performance assessments need not evaluate in detail the releases from all events and processes estimated to have a greater likelihood of occurrence. Some of these events and processes may be omitted from the performance assessments if there is a reasonable expectation that the remaining probability distribution of cumulative releases would not be significantly changed by such omissions.

Compliance with §191.13. The Agency assumes that, whenever practicable, the implementing agency will assemble all of the results of the performance assessments to determine compliance with §191.13 into a “complementary cumulative distribution function” that indicates the probability of exceeding various levels of cumulative release. When the uncertainties in parameters are considered in a performance assessment, the effects of the uncertainties considered can be incorporated into a single such distribution function for each disposal system considered. The Agency assumes that a disposal system can be considered to be in compliance with §191.13 if this single distribution function meets the requirements of §191.13(a).

Compliance with §§191.15 and 191.16. When the uncertainties in undisturbed performance of a disposal system are considered, the implementing agencies need not require that a very large percentage of the range of estimated radiation exposures or radionuclide concentrations fall below limits established in §§191.15 and 191.16, respectively. The Agency assumes that compliance can be determined based upon “best estimate” predictions (e.g., the mean or the median of the appropriate distribution, whichever is higher). Institutional Controls. To comply with §191.14(a), the implementing agency will assume that none of the active institutional controls prevent or reduce radionuclide releases for more than 100 years after disposal. However, the Federal Government is committed to retaining ownership of all disposal sites for spent nuclear fuel and high-level and transuranic radioactive wastes and will establish appropriate markers and records, consistent with §191.14(c). The Agency assumes that, as long as such passive institutional controls endure and are understood, they: (1) Can be effective in deterring systematic or persistent exploitation of these