lower than the Hg concentration from the previous test, continue using the higher value from the previous test for reporting purposes and use that same higher Hg concentration value in Equation 1 to determine the due date for the next retest, as described in paragraph (e)(1)(iii) of this section.

(iii) If testing is done at the common stack, the due date for the next scheduled retest shall be determined as follows:

(A) Substitute the maximum potential flow rate for the common stack (as defined in the monitoring plan) and the highest Hg concentration from any test run (or 0.50 μg/scm, if greater) into Equation 1;

(B) If the value of E obtained from Equation 1, rounded to the nearest ounce, is greater than 144 times the number of units sharing the common stack, but less than or equal to 464 times the number of units sharing the stack, the next retest is due in two QA operating quarters;

(C) If the value of E obtained from Equation 1, rounded to the nearest ounce, is less than or equal to 144 times the number of units sharing the common stack, the next retest is due in four QA operating quarters.

(2) For units with multiple stack or duct configurations, Hg emission testing must be performed separately on each stack or duct, and the sum of the estimated annual Hg mass emissions from the stacks or ducts must not exceed 464 ounces of Hg per year. For reporting purposes, the default Hg concentration used for each stack or duct shall either be the highest value obtained in any test run for that stack or 0.50 μg/scm, whichever is greater.

(3) For units with a main stack and bypass stack configuration, Hg emission testing shall be performed only on the main stack. For reporting purposes, the default Hg concentration used for the main stack shall either be the highest value obtained in any test run for that stack or 0.50 μg/scm, whichever is greater. Whenever the main stack is bypassed, the maximum potential Hg concentration, as defined in section 2.1.7 of appendix A to this part, shall be reported.

(f) At the end of each calendar year, if the cumulative annual Hg mass emissions from an affected unit have exceeded 464 ounces, then the owner shall install, certify, operate, and maintain a Hg concentration monitoring system or a sorbent trap monitoring system no later than 180 days after the end of the calendar year in which the annual Hg mass emissions exceeded 464 ounces. For common stack and multiple stack configurations, installation and certification of a Hg concentration or sorbent trap monitoring system on each stack (except for bypass stacks) is likewise required within 180 days after the end of the calendar year, if:

(1) The annual Hg mass emissions at the common stack have exceeded 464 ounces times the number of affected units using the common stack; or

(2) The sum of the annual Hg mass emissions from all of the multiple stacks or ducts has exceeded 464 ounces; or

(3) The sum of the annual Hg mass emissions from the main and bypass stacks has exceeded 464 ounces.

(g) For an affected unit that is using a Hg concentration CEMS or a sorbent trap system under §75.81(a) to continuously monitor the Hg mass emissions, the owner or operator may switch to the methodology in §75.81(b), provided that the applicable conditions in paragraphs (c) through (f) of this section are met.

§ 75.82 40 CFR Ch. I (7–1–10 Edition)

may install, certify, operate and maintain the monitoring systems and perform the Hg emission testing described under §75.81(b). If reporting of the unit heat input rate is required, determine the hourly unit heat input rates either by:

(i) Apportioning the common stack heat input rate to the individual units according to the procedures in §75.16(e)(3); or

(ii) Installing, certifying, operating, and maintaining a flow monitoring system and diluent monitor in the duct to the common stack from each unit; or

(2) Install, certify, operate, and maintain the monitoring systems and (if applicable) perform the Hg emission testing described in §75.81(a) or §75.81(b) in the duct to the common stack from each unit.

(b) Unit utilizing common stack with nonaffected unit(s). When one or more affected units utilizes a common stack with one or more nonaffected units, the owner or operator shall either:

(1) Install, certify, operate, and maintain the monitoring systems and (if applicable) perform the Hg emission testing described in §75.81(a) or §75.81(b) in the duct to the common stack from each affected unit; or

(2) Install, certify, operate, and maintain the monitoring systems described in §75.81(a) in the common stack; and

(i) Install, certify, operate, and maintain the monitoring systems and (if applicable) perform the Hg emission testing described in §75.81(a) or §75.81(b) in the duct to the common stack from each non-affected unit. The designated representative shall submit a petition to the permitting authority and the Administrator to allow a method of calculating and reporting the Hg mass emissions from the affected units as the difference between Hg mass emissions measured in the common stack and Hg mass emissions measured in the ducts of the non-affected units, not to be reported as an hourly value less than zero. The permitting authority and the Administrator may approve such a method whenever the designated representative demonstrates, to the satisfaction of the permitting authority and the Administrator, that the method ensures that the Hg mass emissions from the affected units are not underestimated; or

(ii) Count the combined emissions measured at the common stack as the Hg mass emissions for the affected units, for recordkeeping and compliance purposes, in accordance with paragraph (a) of this section; or

(iii) Submit a petition to the permitting authority and the Administrator to allow use of a method for apportioning Hg mass emissions measured in the common stack to each of the units using the common stack and for reporting the Hg mass emissions. The permitting authority and the Administrator may approve such a method whenever the designated representative demonstrates, to the satisfaction of the permitting authority and the Administrator, that the method ensures that the Hg mass emissions from the affected units are not underestimated.

(3) If the monitoring option in paragraph (b)(2) of this section is selected, and if heat input is required to be reported under the applicable State or Federal Hg mass emission reduction program that adopts the requirements of this subpart, the owner or operator shall either:

(i) Apportion the common stack heat input rate to the individual units according to the procedures in §75.16(e)(3); or

(ii) Install a flow monitoring system and a diluent gas (O2 or CO2) monitoring system in the duct leading from each affected unit to the common stack, and measure the heat input rate in each duct, according to section 5.2 of appendix F to this part.

(c) Unit with a main stack and a bypass stack. Whenever any portion of the flue gases from an affected unit can be routed through a bypass stack to avoid the Hg monitoring system(s) installed on the main stack, the owner and operator shall either:

(1) Install, certify, operate, and maintain the monitoring systems described in §75.81(a) on both the main stack and the bypass stack and calculate Hg mass emissions for the unit as the sum of the Hg mass emissions measured at the two stacks;

(2) Install, certify, operate, and maintain the monitoring systems described in §75.81(a) at the main stack and
measure Hg mass emissions at the bypass stack using the appropriate reference methods in §75.22(b). Calculate Hg mass emissions for the unit as the sum of the emissions recorded by the installed monitoring systems on the main stack and the emissions measured by the reference method monitoring systems;

(3) Install, certify, operate, and maintain the monitoring systems and (if applicable) perform the Hg emission testing described in §75.81(a) or §75.81(b) only on the main stack. If this option is chosen, it is not necessary to designate the exhaust configuration as a multiple stack configuration in the monitoring plan required under §75.53, since only the main stack is monitored. For each unit operating hour in which the bypass stack is used, report, as applicable, the maximum potential Hg concentration (as defined in section 2.1.7 of appendix A to this part), and the appropriate substitute data values for flow rate, CO$_2$ concentration, O$_2$ concentration, and moisture (as applicable), in accordance with the missing data procedures of §§ 75.31 through 75.37; or

(4) If the monitoring option in paragraph (c)(1) or (c)(2) of this section is selected, and if heat input is required to be reported under the applicable State or Federal Hg mass emission reduction program that adopts the requirements of this subpart, the owner or operator shall:

(i) Use the installed flow and diluent monitors to determine the hourly heat input rate at each stack (mmBtu/hr), according to section 5.2 of appendix F to this part; and

(ii) Calculate the hourly heat input at each stack (in mmBtu) by multiplying the measured stack heat input rate by the corresponding stack operating time; and

(iii) Determine the hourly unit heat input by summing the hourly stack heat input values.

(d) Unit with multiple stack or duct configuration. When the flue gases from an affected unit discharge to the atmosphere through more than one stack, or when the flue gases from an affected unit utilize two or more ducts feeding into a single stack and the owner or operator chooses to monitor in the ducts rather than in the stack, the owner or operator shall either:

(1) Install, certify, operate, and maintain the monitoring systems and (if applicable) perform the Hg emission testing described in §75.81(a) or §75.81(b) in each of the multiple stacks and determine Hg mass emissions from the affected unit as the sum of the Hg mass emissions recorded for each stack. If another unit also exhausts flue gases into one of the monitored stacks, the owner or operator shall comply with the applicable requirements of paragraphs (a) and (b) of this section, in order to properly determine the Hg mass emissions from the units using that stack;

(2) Install, certify, operate, and maintain the monitoring systems and (if applicable) perform the Hg emission testing described in §75.81(a) or §75.81(b) in each of the ducts that feed into the stack, and determine Hg mass emissions from the affected unit using the sum of the Hg mass emissions measured at each duct, except that where another unit also exhausts flue gases to one or more of the stacks, the owner or operator shall also comply with the applicable requirements of paragraphs (a) and (b) of this section to determine and record Hg mass emissions from the units using that stack; or

(3) If the monitoring option in paragraph (d)(1) or (d)(2) of this section is selected, and if heat input is required to be reported under the applicable State or Federal Hg mass emission reduction program that adopts the requirements of this subpart, the owner or operator shall:

(i) Use the installed flow and diluent monitors to determine the hourly heat input rate at each stack or duct (mmBtu/hr), according to section 5.2 of appendix F to this part; and

(ii) Calculate the hourly heat input at each stack or duct (in mmBtu) by multiplying the measured stack (or duct) heat input rate by the corresponding stack (or duct) operating time; and

(iii) Determine the hourly unit heat input by summing the hourly stack (or duct) heat input values.

[70 FR 28684, May 18, 2005, as amended at 73 FR 4362, Jan. 24, 2008]