§ 63.6612 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate an existing stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or an existing stationary RICE located at an area source of HAP emissions?

If you own or operate an existing CI stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or an existing stationary CI RICE located at an area source of HAP emissions you are subject to the requirements of this section.

(a) You must conduct any initial performance test or other initial compliance demonstration according to Tables 4 and 5 to this subpart that apply to you within 180 days after the compliance date that is specified for your stationary RICE in §63.6595 and according to the provisions in §63.7(a)(2).

(b) An owner or operator is not required to conduct an initial performance test on a unit for which a performance test has been previously conducted, but the test must meet all of the conditions described in paragraphs (b)(1) through (4) of this section.

(1) The test must have been conducted using the same methods specified in this subpart, and these methods must have followed correctly.

(2) The test must not be older than 2 years.

(3) The test must be reviewed and accepted by the Administrator.

(4) Either no process or equipment changes must have been made since the test was performed, or the owner or operator must be able to demonstrate that the results of the performance test, with or without adjustments, reliably demonstrate compliance despite process or equipment changes.

[75 FR 9676, Mar. 3, 2010]

§ 63.6615 When must I conduct subsequent performance tests?

If you must comply with the emission limitations and operating limitations, you must conduct subsequent performance tests as specified in Table 3 of this subpart.

§ 63.6620 What performance tests and other procedures must I use?

(a) You must conduct each performance test in Tables 3 and 4 of this subpart that applies to you.

(b) Each performance test must be conducted according to the requirements that this subpart specifies in Table 4 to this subpart. If you own or operate a non-operational stationary RICE that is subject to performance testing, you do not need to start up the engine solely to conduct the performance test. Owners and operators of a non-operational engine can conduct the performance test when the engine is started up again.

(c) [Reserved]

(d) You must conduct three separate test runs for each performance test required in this section, as specified in §63.7(e)(3). Each test run must last at least 1 hour.

(e)(1) You must use Equation 1 of this section to determine compliance with the percent reduction requirement:

\[
\frac{C_i - C_o}{C_i} \times 100 = R \quad (\text{Eq. 1})
\]

Where:

\(C_i \) = concentration of CO or formaldehyde at the control device inlet,

\(C_o \) = concentration of CO or formaldehyde at the control device outlet, and

\(R \) = percent reduction of CO or formaldehyde emissions.

(2) You must normalize the carbon monoxide (CO) or formaldehyde concentrations at the inlet and outlet of the control device to a dry basis and to 15 percent oxygen, or an equivalent percent carbon dioxide (CO\(_2\)). If pollutant concentrations are to be corrected to 15 percent oxygen and CO\(_2\) concentration is measured in lieu of oxygen concentration measurement, a CO\(_2\) correction factor is needed. Calculate the CO\(_2\) correction factor as described in paragraphs (e)(2)(i) through (iii) of this section.
(i) Calculate the fuel-specific F_o value for the fuel burned during the test using values obtained from Method 19, section 5.2, and the following equation:

$$F_o = \frac{0.209 F_d}{F_c} \quad \text{(Eq. 2)}$$

Where:
- $F_o =$ Fuel factor based on the ratio of oxygen volume to the ultimate CO$_2$ volume produced by the fuel at zero percent excess air.
- 0.209 = Fraction of air that is oxygen, percent/100.
- $F_d =$ Ratio of the volume of dry effluent gas to the gross calorific value of the fuel from Method 19, dsm3/J (dscf/106 Btu).
- $F_c =$ Ratio of the volume of CO$_2$ produced to the gross calorific value of the fuel from Method 19, dsm3/J (dscf/106 Btu).

(ii) Calculate the CO$_2$ correction factor for correcting measurement data to 15 percent oxygen, as follows:

$$X_{CO_2} = \frac{5.9}{F_o} \quad \text{(Eq. 3)}$$

Where:
- $X_{CO_2} =$ CO$_2$ correction factor, percent.
- 5.9 = 20.9 percent O$_2$ - 15 percent O$_2$, the defined O$_2$ correction value, percent.

(iii) Calculate the NO$_X$ and SO$_2$ gas concentrations adjusted to 15 percent O$_2$ using CO$_2$ as follows:

$$C_{adj} = C_d \times X_{CO_2} \times \%CO_2 \quad \text{(Eq. 4)}$$

Where:
- $\%CO_2 =$ Measured CO$_2$ concentration measured, dry basis, percent.

(f) If you comply with the emission limitation to reduce CO and you are not using an oxidation catalyst, if you comply with the emission limitation to reduce formaldehyde and you are not using NSCR, or if you comply with the emission limitation to limit the concentration of formaldehyde in the stationary RICE exhaust and you are not using an oxidation catalyst or NSCR, you must petition the Administrator for operating limitations to be established during the initial performance test and continuously monitored thereafter; or for approval of no operating limitations. You must not conduct the initial performance test until after the petition has been approved by the Administrator.

(g) If you petition the Administrator for approval of operating limitations, your petition must include the information described in paragraphs (g)(1) through (5) of this section.

1. Identification of the specific parameters you propose to use as operating limitations;
2. A discussion of the relationship between these parameters and HAP emissions, identifying how HAP emissions change with changes in these parameters, and how limitations on these parameters will serve to limit HAP emissions;
3. A discussion of how you will establish the upper and/or lower values for these parameters which will establish the limits on these parameters in the operating limitations;
4. A discussion identifying the methods you will use to measure and the instruments you will use to monitor these parameters, as well as the relative accuracy and precision of these methods and instruments; and
5. A discussion identifying the frequency and methods for recalibrating the instruments you will use for monitoring these parameters.

(h) If you petition the Administrator for approval of no operating limitations, your petition must include the information described in paragraphs (h)(1) through (7) of this section.

1. Identification of the parameters associated with operation of the stationary RICE and any emission control device which could change intentionally (e.g., operator adjustment, automatic controller adjustment, etc.) or unintentionally (e.g., wear and tear, error, etc.) on a routine basis or over time;
2. A discussion of the relationship, if any, between changes in the parameters and changes in HAP emissions;
3. For the parameters which could change in such a way as to increase HAP emissions, a discussion of whether establishing limitations on the parameters would serve to limit HAP emissions;
4. For the parameters which could change in such a way as to increase HAP emissions, a discussion of how you could establish upper and/or lower
§63.6625 40 CFR Ch. I (7–1–10 Edition)

What are my monitoring, installation, collection, operation, and maintenance requirements?

(a) If you elect to install a CEMS as specified in Table 5 of this subpart, you must install, operate, and maintain a CEMS to monitor CO and either oxygen or CO₂ at both the inlet and the outlet of the control device according to the requirements in paragraphs (a)(1) through (4) of this section.

(1) Each CEMS must be installed, operated, and maintained according to the applicable performance specifications of 40 CFR part 60, appendix B.

(2) You must conduct an initial performance evaluation and an annual relative accuracy test audit (RATA) of each CEMS according to the requirements in §63.8 and according to the applicable performance specifications of 40 CFR part 60, appendix B as well as daily and periodic data quality checks in accordance with 40 CFR part 60, appendix F, procedure 1.

(3) As specified in §63.8(c)(4)(ii), each CEMS must complete a minimum of one cycle of operation (sampling, analyzing, and data recording) for each successive 15-minute period. You must have at least two data points, with each representing a different 15-minute period, to have a valid hour of data.

(4) The CEMS data must be reduced as specified in §63.8(g)(2) and recorded in parts per million or parts per billion (as appropriate for the applicable limitation) at 15 percent oxygen or the equivalent CO₂ concentration.

(b) If you are required to install a continuous parameter monitoring system (CPMS) as specified in Table 5 of this subpart, you must install, operate, and maintain each CPMS according to the requirements in §63.8.

(c) If you are operating a new or reconstructed stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, you must monitor and record your fuel usage daily with separate fuel meters to measure the volumetric flow rate of each fuel. In addition, you must operate your stationary RICE in a manner which reasonably minimizes HAP emissions.

(d) If you are operating a new or reconstructed emergency 4SLB stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at a major source of HAP emissions, you must install a non-resettable hour meter prior to the startup of the engine.

(e) If you own or operate an existing stationary RICE with a site rating of less than 100 brake HP located at a major source of HAP emissions, an existing stationary emergency RICE, or an existing stationary RICE located at