Pt. 1910, Subpt. T, App. C

3. The tasks of a scientific diver are those of an observer and data gatherer. Construction and trouble-shooting tasks traditionally associated with commercial diving are not included within scientific diving.

4. Scientific divers, based on the nature of their activities, must use scientific expertise in studying the underwater environment and, therefore, are scientists or scientists in training.

[50 FR 1050, Jan. 9, 1985]

APPENDIX C TO SUBPART T TO PART 1910—ALTERNATIVE CONDITIONS UNDER §1910.401(a)(3) FOR RECREATIONAL DIVING INSTRUCTORS AND DIVING GUIDES (MANDATORY)

Paragraph (a)(3) of §1910.401 specifies that an employer of recreational diving instructors and diving guides (hereafter, “divers” or “employees”) who complies with all of the conditions of this appendix need not provide a decompression chamber for these divers as required under §§1910.423(b)(2) or (c)(3) or 1910.426(b)(1).

1. EQUIPMENT REQUIREMENTS FOR REBREATHERS

(a) The employer must ensure that each employee operates the rebreather (i.e., semi-closed-circuit and closed-circuit self-contained underwater breathing apparatuses (hereafter, “SCUBAs”)) according to the rebreather manufacturer’s instructions.

(b) The employer must ensure that each rebreather has a counterlung that supplies a sufficient volume of breathing gas to their divers to sustain the divers’ respiration rates, and contains a baffle system and/or other moisture separating system that keeps moisture from entering the scrubber.

(c) The employer must place a moisture trap in the breathing loop of the rebreather, and ensure that:

(i) The rebreather manufacturer approves both the moisture trap and its location in the breathing loop; and

(ii) Each employee uses the moisture trap according to the rebreather manufacturer’s instructions.

(d) The employer must ensure that each rebreather has a continuously functioning moisture sensor, and that:

(i) The moisture sensor connects to a visual (e.g., digital, graphic, analog) or auditory (e.g., voice, pure tone) alarm that is readily detectable by the diver under the diving conditions in which the diver operates, and warns the diver of moisture in the breathing loop in sufficient time to terminate the dive and return safely to the surface; and

(ii) Each diver uses the moisture sensor according to the rebreather manufacturer’s instructions.

(e) The employer must ensure that each rebreather contains a continuously functioning CO₂ sensor in the breathing loop, and that:

(i) The rebreather manufacturer approves the location of the CO₂ sensor in the breathing loop;

(ii) The CO₂ sensor is integrated with an alarm that operates in a visual (e.g., digital, graphic, analog) or auditory (e.g., voice, pure tone) mode that is readily detectable by each diver under the diving conditions in which the diver operates; and

(iii) The CO₂ alarm remains continuously activated when the inhaled CO₂ level reaches and exceeds 0.005 atmospheres absolute (ATA).

(f) Before each day’s diving operations, and more often when necessary, the employer must calibrate the CO₂ sensor according to the sensor manufacturer’s instructions, and ensure that:

(i) The equipment and procedures used to perform this calibration are accurate to within 10% of a CO₂ concentration of 0.005 ATA or less;

(ii) The equipment and procedures maintain this accuracy as required by the sensor manufacturer’s instructions; and

(iii) The calibration of the CO₂ sensor is accurate to within 10% of a CO₂ concentration of 0.005 ATA or less.

(g) The employer must replace the CO₂ sensor when it fails to meet the accuracy requirements specified in paragraph 1(f)(iii) of this appendix, and ensure that the replacement CO₂ sensor meets the accuracy requirements specified in paragraph 1(f)(iii) of this appendix before placing the rebreather in operation.

(h) As an alternative to using a continuously functioning CO₂ sensor, the employer may use a schedule for replacing CO₂-sorbent material provided by the rebreather manufacturer. The employer may use such a schedule only when the rebreather manufacturer has developed it according to the canister-testing protocol specified below in Condition 11, and must use the canister within the temperature range for which the manufacturer conducted its scrubber canister tests following that protocol. Variations above or below the range are acceptable only after the manufacturer adds that lower or higher temperature to the protocol.

(i) When using CO₂-sorbent replacement schedules, the employer must ensure that each rebreather uses a manufactured (i.e., commercially pre-packed), disposable scrubber cartridge containing a CO₂-sorbent material that:

(i) Is approved by the rebreather manufacturer;

(ii) Removes CO₂ from the diver’s exhaled gas; and
(ii) Maintains the CO$_2$ level in the breathable gas (i.e., the gas that a diver inhales directly from the regulator) below a partial pressure of 0.01 ATA.

(i) As an alternative to manufactured, disposable scrubber cartridges, the employer may fill CO$_2$ scrubber cartridges manually with CO$_2$-sorbing material when:

(i) The rebreather manufacturer permits manual filling of scrubber cartridges;
(ii) The employer fills the scrubber cartridges according to the rebreather manufacturer’s instructions;
(iii) The employer replaces the CO$_2$-sorbing material using a replacement schedule developed under paragraph 1(h) of this appendix; and

(iv) The employer demonstrates that manual filling meets the requirements specified in paragraph 1(i) of this appendix.

<k>Notes to paragraph 2:
</k>

(k) The employer must ensure that each rebreather has an information module that provides:

(i) A visual (e.g., digital, graphic, analog) or auditory (e.g., voice, pure tone) display that effectively warns the diver of solenoid failure (when the rebreather uses solenoids) and other electrical weaknesses or failures (e.g., low battery voltage);
(ii) For a semi-closed circuit rebreather, a visual display for the partial pressure of CO$_2$, or deviations above and below a preset CO$_2$ partial pressure of 0.005 ATA; and
(iii) For a closed-circuit rebreather, a visual display for: partial pressures of O$_2$ and CO$_2$, or deviations above and below a preset CO$_2$ partial pressure of 0.005 ATA and a preset O$_2$ partial pressure of 1.40 ATA or lower; gas temperature in the breathing loop; and water temperature.

(i) Before each day’s diving operations, and more often when necessary, the employer must ensure that the electrical power supply and electrical and electronic circuits in each rebreather are operating as required by the rebreather manufacturer’s instructions.

2. Special Requirements for Closed-Circuit Rebreathers

(a) The employer must ensure that each closed-circuit rebreather uses supply-pressure sensors for the O$_2$ and diluent (i.e., air or nitrogen) gases and continuously functioning sensors for detecting temperature in the inhalation side of the gas-loop and the ambient water.

(b) The employer must ensure that:

(i) At least two O$_2$ sensors are located in the inhalation side of the breathing loop, and
(ii) The O$_2$ sensors are: functioning continuously; temperature compensated; and approved by the rebreather manufacturer.

(c) Before each day’s diving operations, and more often when necessary, the employer must calibrate O$_2$ sensors as required by the sensor manufacturer’s instructions. In doing so, the employer must:

(i) Ensure that the equipment and procedures used to perform the calibration are accurate to within 1% of the O$_2$ fraction by volume;
(ii) Maintain this accuracy as required by the manufacturer of the calibration equipment;
(iii) Ensure that the sensors are accurate to within 1% of the O$_2$ fraction by volume;
(iv) Replace O$_2$ sensors when they fail to meet the accuracy requirements specified in paragraph 2(c)(ii) of this appendix; and
(v) Ensure that the replacement O$_2$ sensors meet the accuracy requirements specified in paragraph 2(c)(iii) of this appendix before placing a rebreather in operation.

(d) The employer must ensure that each closed-circuit rebreather has:

(i) A gas-controller package with electrically operated solenoid O$_2$-supply valves;
(ii) A pressure-activated regulator with a second-stage diluent-gas addition valve;
(iii) A manually operated gas-supply bypass valve to add O$_2$ or diluent gas to the breathing loop; and
(iv) Separate O$_2$ and diluent-gas cylinders to supply the breathing-gas mixture.

3. O$_2$ Concentration in the Breathing Gas

a) The employer must ensure that the fraction of O$_2$ in the nitrox breathing-gas mixture:

(a) Is greater than the fraction of O$_2$ in compressed air (i.e., exceeds 22% by volume);
(b) For open-circuit SCUBA, never exceeds a maximum fraction of breathable O$_2$ of 40% by volume or a maximum O$_2$ partial pressure of 1.40 ATA, whichever exposes divers to less O$_2$; and
(c) For a rebreather, never exceeds a maximum O$_2$ partial pressure of 1.40 ATA.

4. Regulating O$_2$ Exposures and Diving Depth

(a) Regarding O$_2$ exposure, the employer must:

(i) Ensure that the exposure of each diver to partial pressures of O$_2$ between 0.60 and 1.40 ATA does not exceed the 24-hour single-exposure time limits specified either by the 2001 National Oceanic and Atmospheric Administration Diving Manual (the “2001 NOAA Diving Manual”), or by the report entitled “Enriched Air Operations and Time Out Guide” published in 1995 by the Professional Association of Diving Instructors (known commonly as the “1995 DSAT Oxygen Exposure Table”); and

(ii) Determine a diver’s O$_2$-exposure duration using the diver’s maximum O$_2$ exposure (partial pressure of O$_2$) during the dive and the total dive time (i.e., from the time the diver leaves the surface until the diver returns to the surface).

(b) Regardless of the diving equipment used, the employer must ensure that no
diver exceeds a depth of 130 feet of seawater ("fsw") or a maximum O_2 partial pressure of 1.40 ATA, whichever exposes the diver to less O_2.

5. USE OF NO-DECOMPRESSION LIMITS

(a) For diving conducted while using nitrox breathing-gas mixtures, the employer must ensure that each diver remains within the no-decompression limits specified for single and repetitive air diving and published in the 2001 NOAA Diving Manual or the report entitled "Development and Validation of No-Stop Decompression Procedures for Recreational Diving: The DSAT Recreational Dive Planner," published in 1994 by Hamilton Research Ltd. (known commonly as the "1994 DSAT No-Decompression Tables").

(b) An employer may permit a diver to use a dive-decompression computer designed to regulate decompression when the dive-decompression computer uses the no-decompression limits specified in paragraph 5(a) of this appendix, and provides output that reliably represents those limits.

6. MIXING AND ANALYZING THE BREATHING GAS

(a) The employer must ensure that:
 (i) Properly trained personnel mix nitrox-breathing gases, and that nitrogen is the only inert gas used in the breathing-gas mixture; and
 (ii) When mixing nitrox-breathing gases, they mix the appropriate breathing gas before delivering the mixture to the breathing-gas cylinders, using the continuous-flow or partial-pressure mixing techniques specified in the 2001 NOAA Diving Manual, or using a filter-membrane system.

(b) Before the start of each day’s diving operations, the employer must determine the O_2 fraction of the breathing-gas mixture using an O_2 analyzer. In doing so, the employer must:
 (i) Ensure that the O_2 analyzer is accurate to within 1% of the O_2 fraction by volume.
 (ii) Maintain this accuracy as required by the manufacturer of the analyzer.

(c) When the breathing gas is a commercially supplied nitrox breathing-gas mixture, the employer must ensure that the O_2 meets the medical USP specifications (Type I, Quality Verification Level A) or aviator’s breathing-oxygen specifications (Type I, Quality Verification Level E) of CGA G-4.3-2000 ("Commodity Specification for Oxygen"). In addition, the commercial supplier must:
 (i) Determine the O_2 fraction in the breathing-gas mixture using an analytic method that is accurate to within 1% of the O_2 fraction by volume;
 (ii) Make this determination when the mixture is in the charged tank and after disconnecting the charged tank from the charging apparatus;
 (iii) Include documentation of the O_2-analysis procedures and the O_2 fraction when delivering the charged tanks to the employer.

(d) Before producing nitrox breathing-gas mixtures using a compressor in which the gas pressure in any system component exceeds 125 pounds per square inch (psig), the:
 (i) Compressor manufacturer must provide the employer with documentation that the compressor is suitable for mixing high-pressure air with the highest O_2 fraction used in the nitrox breathing-gas mixture when operated according to the manufacturer’s operating and maintenance specifications;
 (ii) Employer must comply with paragraph 6(e) of this appendix, unless the compressor is rated for O_2 service and is oil-less or oil-free; and
 (iii) Employer must ensure that the compressor meets the requirements specified in paragraphs (i)(1) and (i)(2) of §1910.430 whenever the highest O_2 fraction used in the mixing process exceeds 40%.

(e) Before producing nitrox breathing-gas mixtures using an oil-lubricated compressor to mix high-pressure air with O_2 and Regardless of the gas pressure in any system component, the:
 (i) Employer must use only uncontaminated air (i.e., air containing no hydrocarbon particulates) for the nitrox breathing-gas mixture;
 (ii) Compressor manufacturer must provide the employer with documentation that the compressor is suitable for mixing the high-pressure air with the highest O_2 fraction used in the nitrox breathing-gas mixture when operated according to the manufacturer’s operating and maintenance specifications;
 (iii) Employer must filter the high-pressure air to produce O_2-compatible air;
 (iv) The filter-system manufacturer must provide the employer with documentation that the filter system used for this purpose is suitable for producing O_2-compatible air when operated according to the manufacturer’s operating and maintenance specifications; and
 (v) Employer must continuously monitor the air downstream from the filter for hydrocarbon contamination.

7. EMERGENCY EGRESS

(a) Regardless of the type of diving equipment used by a diver (i.e., open-circuit SCUBA or rebreathers), the employer must ensure that the equipment contains (or incorporates) an open-circuit emergency-egress system (a “bail-out” system) in which the second stage of the regulator connects to
a separate supply of emergency breathing gas, and the emergency breathing gas consists of air or the same nitrox breathing-gas mixture used during the dive.

(b) As an alternative to the "bail-out" system specified in paragraph 7(a) of this appendix, the employer may use:

(i) For open-circuit SCUBA, an emergency-egress system as specified in §1910.426(c)(4); or

(ii) For a semi-closed-circuit and closed-circuit rebreather, a system configured so that the second stage of the regulator connects to a reserve supply of emergency breathing gas.

(c) The employer must obtain from the breather manufacturer sufficient information to ensure that the bail-out system performs reliably and has sufficient capacity to enable the diver to terminate the dive and return safely to the surface.

8. TREATING DIVING-RELATED MEDICAL EMERGENCIES

(a) Before each day’s diving operations, the employer must:

(i) Ensure that at least two attendants, either employees or non-employees, qualified in first-aid and administering O₂ treatment, are available at the dive site to treat diving-related medical emergencies; and

(ii) Verify their qualifications for this task.

(b) Before starting each day’s diving operations, the employer must:

(i) Designate an employee or a non-employee to make entries in a diving log; and

(ii) Verify that this designee understands the diving and medical terminology, and proper procedures, for making correct entries in the diving log.

(c) The employer must ensure that a hard-copy of the no-decompression tables used for the dives (as specified in paragraph 6(a) of this appendix) is readily available at the dive site, whether or not the divers use dive-decompression computers.

10. DIVER TRAINING

The employer must ensure that each diver receives training that enables the diver to perform work safely and effectively while using open-circuit SCUBAs or rebreathers supplied with nitrox breathing-gas mixtures. Accordingly, each diver must be able to demonstrate the ability to perform critical tasks safely and effectively, including, but not limited to: recognizing the effects of breathing excessive CO₂ and O₂; taking appropriate action after detecting excessive levels of CO₂ and O₂; and properly evaluating, operating, and maintaining their diving equipment under the diving conditions they encounter.

11. TESTING PROTOCOL FOR DETERMINING THE CO₂ LIMITS OF REBREATHER CANISTERS

(a) The employer must ensure that the rebreather manufacturer has used the following procedures for determining that the CO₂-sorbent material meets the specifications of the sorbent material’s manufacturer:

(i) The North Atlantic Treating Organization CO₂ absorbent-activity test;

(ii) The RoTap shaker and nested-sieves test;

(iii) The Navy Experimental Diving Unit (“NEDU”)-derived Schlegel test; and

(iv) The NEDU MeshFit software.

(b) The employer must ensure that the rebreather manufacturer has applied the following canister-testing materials, methods, procedures, and statistical analyses:

(i) Use of a nitrox breathing-gas mixture that has an O₂ fraction maintained at 0.28 (equivalent to 1.4 ATA of O₂ at 130 fsw, the
1 NEDU can provide the manufacturer with information on the temperature of a diver’s exhaled breath at various water temperatures and ventilation rates, as well as techniques and procedures used to maintain these temperatures during the testing trials.

(v) When using a work rate (i.e., breathing-machine tidal volume and frequency) other than the work rates listed in the table above, addition of the appropriate combinations of ventilation rates and CO₂-injection rates;

(vi) Performance of the CO₂ injection at a constant (steady) and continuous rate during each testing trial;

(vii) Determination of canister duration using a minimum of four (4) water temperatures, including 40, 50, 70, and 90 degrees F (4.4, 10.0, 21.1, and 32.2 degrees C, respectively);

(viii) Monitoring of the breathing-gas temperature at the rebreather mouthpiece (at the “chrome T” connector), and ensuring that this temperature conforms to the temperature of a diver’s exhaled breath at the water temperature and ventilation rate used during the testing trial;¹

(ix) Implementation of at least eight (8) testing trials for each combination of temperature and ventilation-CO₂-injection rates (for example, eight testing trials at 40 degrees F using a ventilation rate of 22.5 Lpm at a CO₂-injection rate of 0.90 Lpm);

(x) Allowing the water temperature to vary no more than ±2.0 degrees F (±1.0 degree C) between each of the eight testing trials, and no more than ±1.0 degree F (±0.5 degree C) within each testing trial;

(xi) Use of the average temperature for each set of eight testing trials in the statistical analysis of the testing-trial results, with the testing-trial results being the time taken for the inhaled breathing gas to reach 0.005 ATA of CO₂ (i.e., the canister-duration results);

(xii) Analysis of the canister-duration results using the repeated-measures statistics described in NEDU Report 2–99;

(xiii) Specification of the replacement schedule for the CO₂-sorbent materials in terms of the lower prediction line (or limit) of the 95% confidence interval; and

(xiv) Derivation of replacement schedules only by interpolating among, but not by extrapolating beyond, the depth, water temperatures, and exercise levels used during canister testing.

¹NEDU can provide the manufacturer with information on the temperature of a diver’s exhaled breath at various water temperatures and ventilation rates, as well as techniques and procedures used to maintain these temperatures during the testing trials.

TABLE I—CANISTER TESTING PARAMETERS

<table>
<thead>
<tr>
<th>Ventilation rates (Lpm, ATPS)</th>
<th>Breathing machine tidal volumes (L)</th>
<th>Breathing machine frequencies (breaths per min.)</th>
<th>CO₂ injection rates (Lpm, STPD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.5</td>
<td>1.5</td>
<td>15</td>
<td>0.90</td>
</tr>
<tr>
<td>40.0</td>
<td>2.0</td>
<td>20</td>
<td>1.35</td>
</tr>
<tr>
<td>62.5</td>
<td>2.5</td>
<td>25</td>
<td>2.25</td>
</tr>
</tbody>
</table>

¹ ATPS means ambient temperature and pressure, saturated with water.

² STPD means standard temperature and pressure, dry; the standard temperature is 32 degrees F (0 degrees C).