terrain and obstructions within five statute miles on each side of the intended track, or at an altitude of 2,000 feet, whichever is higher.

For the purpose of paragraph (b)(2) of this section, it is assumed that the two engines fail at the most critical point en route, that the airplane’s weight at that point where the engines fail includes enough fuel to continue to the airport, to arrive at an altitude of at least 1,500 feet directly over the airport, and after that to fly for 15 minutes at cruise power or thrust, or both, and that the consumption of fuel and oil after engine failure is the same as the consumption allowed for in the net flight path data in the Airplane Flight Manual.

(c) Aircraft certificated after August 29, 1959 (SR422B). No person may operate a turbine engine powered large transport category airplane along an intended route unless that person complies with either of the following:

(1) There is no place along the intended track that is more than 90 minutes (with all engines operating at cruising power) from an airport that meets §135.387.

(2) Its weight, according to the two-engine-inoperative, en route, net flight path data in the Airplane Flight Manual, allows the airplane to fly from the point where the two engines are assumed to fail simultaneously to an airport that meets §135.387, with the net flight path (considering the ambient temperatures anticipated along the track) clearing vertically by at least 2,000 feet all terrain and obstructions within five statute miles on each side of the intended track. For the purposes of this paragraph, it is assumed that—

(i) The two engines fail at the most critical point en route;

(ii) The net flight path has a positive slope at 1,500 feet above the airport where the landing is assumed to be made after the engines fail;

(iii) Fuel jettisoning will be approved if the certificate holder shows that the crew is properly instructed, that the training program is adequate, and that all other precautions are taken to ensure a safe procedure;

(iv) The airplane’s weight at the point where the two engines are assumed to fail provides enough fuel to continue to the airport, to arrive at an altitude of at least 1,500 feet directly over the airport, and after that to fly for 15 minutes at cruise power or thrust, or both; and

(v) The consumption of fuel and oil after the engines fail is the same as the consumption that is allowed for in the net flight path data in the Airplane Flight Manual.


(a) No person operating a turbine engine powered large transport category airplane may take off that airplane at a weight that (allowing for normal consumption of fuel and oil in flight to the destination or alternate airport) the weight of the airplane on arrival would exceed the landing weight in the Airplane Flight Manual for the elevation of the destination airport and the ambient temperature anticipated at the time of landing.

(b) Except as provided in paragraph (c), (d), (e), or (f) of this section, no person operating a turbine engine powered large transport category airplane may take off that airplane unless its weight on arrival, allowing for normal consumption of fuel and oil in flight (in accordance with the landing distance in the Airplane Flight Manual for the elevation of the destination airport and the wind conditions expected there at the time of landing), would allow a full stop landing at the intended destination airport within 60 percent of the effective length of each runway described below from a point 50 feet above the intersection of the obstruction clearance plane and the runway. For the purpose of determining the allowable landing weight at the destination airport the following is assumed:

(1) The airplane is landed on the most favorable runway and in the most favorable direction, in still air.

(2) The airplane is landed on the most suitable runway considering the probable wind velocity and direction and the ground handling characteristics of the airplane, and considering other conditions such as landing aids and terrain.

(a) Except as provided in paragraph (b) of this section, no person may select an airport as an alternate airport for a turbine engine powered large transport category airplane unless (based on the assumptions in §135.385(b)) that airplane, at the weight expected at the time of arrival, can be brought to a full stop landing within 70 percent of the effective length of the runway for turbo-propeller-powered airplanes and 60 percent of the effective length of the runway for turbojet airplanes, from a point 50 feet above the intersection of the obstruction clearance plane and the runway.

(b) Eligible on-demand operators may select an airport as an alternate airport for a turbine engine powered large transport category airplane if (based on the assumptions in §135.385(f)) that airplane, at the weight expected at the time of arrival, can be brought to a full stop landing within 80 percent of the effective length of the runway from a point 50 feet above the intersection of the obstruction clearance plane and the runway.

§ 135.389 Large nontransport category airplanes: Takeoff limitations.

(a) No person operating a large nontransport category airplane may take off that airplane at a weight greater than the weight that would allow the airplane to be brought to a safe stop

(c) A turbopropeller powered airplane that would be prohibited from being taken off because it could not meet paragraph (b)(2) of this section, may be taken off if an alternate airport is selected that meets all of this section except that the airplane can accomplish a full stop landing within 70 percent of the effective length of the runway.

(d) Unless, based on a showing of actual operating landing techniques on wet runways, a shorter landing distance (but never less than that required by paragraph (b) of this section) has been approved for a specific type and model airplane and included in the Airplane Flight Manual, no person may take off a turbojet airplane when the appropriate weather reports or forecasts, or any combination of them, indicate that the runways at the destination airport may be wet or slippery at the estimated time of arrival unless the effective runway length at the destination airport is at least 115 percent of the runway length required under paragraph (b) of this section.

(e) A turbojet airplane that would be prohibited from being taken off because it could not meet paragraph (b)(2) of this section may be taken off if an alternate airport is selected that meets all of paragraph (b) of this section.

(f) An eligible on-demand operator may take off a turbine engine powered large transport category airplane on an on-demand flight if all of the following conditions exist:

1. The operation is permitted by an approved Destination Airport Analysis in that person's operations manual.

2. The airplane's weight on arrival, allowing for normal consumption of fuel and oil in flight (in accordance with the landing distance in the Airplane Flight Manual for the elevation of the destination airport and the wind conditions expected there at the time of landing), would allow a full stop landing at the intended destination airport. For the purpose of determining the allowable landing weight at the destination airport, the following is assumed:

(i) The airplane is landed on the most favorable runway and in the most favorable direction, in still air.

(ii) The airplane is landed on the most suitable runway considering the probable wind velocity and direction and the ground handling characteristics of the airplane, and considering other conditions such as landing aids and terrain.

3. The operation is authorized by operations specifications.