§ 25.321 General.

(a) Flight load factors represent the ratio of the aerodynamic force component (acting normal to the assumed longitudinal axis of the airplane) to the weight of the airplane. A positive load factor is one in which the aerodynamic force acts upward with respect to the airplane.

(b) Considering compressibility effects at each speed, compliance with the flight load requirements of this subpart must be shown—

(1) At each critical altitude within the range of altitudes selected by the applicant;

(2) At each weight from the design minimum weight to the design maximum weight appropriate to each particular flight load condition; and

(3) For each required altitude and weight, for any practicable distribution of disposable load within the operating limitations recorded in the Airplane Flight Manual.

(c) Enough points on and within the boundaries of the design envelope must be investigated to ensure that the maximum load for each part of the airplane structure is obtained.

(d) The significant forces acting on the airplane must be placed in equilibrium in a rational or conservative manner. The linear inertia forces must be considered in equilibrium with the thrust and all aerodynamic loads, while the angular (pitching) inertia forces must be considered in equilibrium with thrust and all aerodynamic moments, including moments due to loads on components such as tail surfaces and nacelles. Critical thrust values in the range from zero to maximum continuous thrust must be considered.

§ 25.331 Symmetric maneuvering conditions.

(a) Procedure. For the analysis of the maneuvering flight conditions specified in paragraphs (b) and (c) of this section, the following provisions apply:

(1) Where sudden displacement of a control is specified, the assumed rate of control surface displacement may not be less than the rate that could be applied by the pilot through the control system.

(2) In determining elevator angles and chordwise load distribution in the maneuvering conditions of paragraphs (b) and (c) of this section, the effect of corresponding pitching velocities must be taken into account. The in-trim and out-of-trim flight conditions specified in §25.255 must be considered.

(b) Maneuvering balanced conditions. Assuming the airplane to be in equilibrium with zero pitching acceleration, the maneuvering conditions A through I on the maneuvering envelope in §25.333(b) must be investigated.

(c) Pitch maneuver conditions. The conditions specified in paragraphs (c)(1) and (2) of this section must be investigated. The movement of the pitch control surfaces may be adjusted to take into account limitations imposed by the maximum pilot effort specified by §25.397(b), control system stops and any indirect effect imposed by limitations in the output side of the control system (for example, stalling torque or maximum rate obtainable by a power control system.)

(1) Maximum pitch control displacement at \(V_A \). The airplane is assumed to be flying in steady level flight (point A, §25.333(b)) and the cockpit pitch control is suddenly moved to obtain extreme nose up pitching acceleration. In defining the tail load, the response of the airplane must be taken into account. Airplane loads that occur subsequent to the time when normal acceleration at the c.g. exceeds the positive limit maneuvering load factor (at point A sub 2 in §25.333(b)), or the resulting tailplane normal load reaches its maximum, whichever occurs first, need not be considered.
Federal Aviation Administration, DOT

§ 25.333

(2) Specified control displacement. A checked maneuver, based on a rational pitching control motion vs. time profile, must be established in which the design limit load factor specified in §25.337 will not be exceeded. Unless lesser values cannot be exceeded, the airplane response must result in pitching accelerations not less than the following:

(i) A positive pitching acceleration (nose up) is assumed to be reached concurrently with the airplane load factor of 1.0 (Points A₁ to D₁, §25.333(b)). The positive acceleration must be equal to or at least

\[\frac{-26n}{v} \left(n - 1.5 \right) \text{ (Radians/sec.}^2 \right) \]

where—

n is the positive load factor at the speed under consideration; and V is the airplane equivalent speed in knots.

(ii) A negative pitching acceleration (nose down) is assumed to be reached concurrently with the positive maneuvering load factor (points A₂ to D₂, §25.333(b)). This negative pitching acceleration must be equal to or at least

\[\frac{39n}{v} \left(n - 1.5 \right) \text{ (Radians/sec.}^2 \right) \]

where—

n is the positive load factor at the speed under consideration, and V is the airplane equivalent speed in knots.

§ 25.333 Flight maneuvering envelope.

(a) General. The strength requirements must be met at each combination of airspeed and load factor on and within the boundaries of the representative maneuvering envelope (V-n diagram) of paragraph (b) of this section. This envelope must also be used in determining the airplane structural operating limitations as specified in §25.1501.

(b) Maneuvering envelope.