Federal Aviation Administration, DOT

§ 25.1419 Ice protection.

If the applicant seeks certification for flight in icing conditions, the airplane must be able to safely operate in the continuous maximum and intermittent maximum icing conditions of appendix C. To establish this—

(1) Allow one life line to be attached to each side of the fuselage; and
(2) Be arranged to allow the life lines to be used to enable the occupants to stay on the wing after ditching.

(a) An analysis must be performed to establish that the ice protection for the various components of the airplane is adequate, taking into account the various airplane operational configurations; and
(b) To verify the ice protection analysis, to check for icing anomalies, and to demonstrate that the ice protection system and its components are effective, the airplane or its components must be flight tested in the various operational configurations, in measured natural atmospheric icing conditions and, as found necessary, by one or more of the following means:
(1) Laboratory dry air or simulated icing tests, or a combination of both, of the components or models of the components.
(2) Flight dry air tests of the ice protection system as a whole, or of its individual components.
(3) Flight tests of the airplane or its components in measured simulated icing conditions.
(c) Caution information, such as an amber caution light or equivalent, must be provided to alert the flightcrew when the anti-ice or de-ice system is not functioning normally.
(d) For turbine engine powered airplanes, the ice protection provisions of this section are considered to be applicable primarily to the airframe. For the powerplant installation, certain additional provisions of subpart E of this part may be found applicable.
(e) One of the following methods of icing detection and activation of the airframe ice protection system must be provided:
(1) A primary ice detection system that automatically activates or alerts the flightcrew to activate the airframe ice protection system;
(2) A definition of visual cues for recognition of the first sign of ice accretion on a specified surface combined with an advisory ice detection system that alerts the flightcrew to activate the airframe ice protection system; or
(3) Identification of conditions conducive to airframe icing as defined by an appropriate static or total air temperature and visible moisture for use by the flightcrew to activate the airframe ice protection system.
(f) Unless the applicant shows that the airframe ice protection system need not be operated during specific phases of flight, the requirements of paragraph (e) of this section are applicable to all phases of flight.
(g) After the initial activation of the airframe ice protection system—
(1) The ice protection system must be designed to operate continuously;
(2) The airplane must be equipped with a system that automatically cycles the ice protection system; or
(3) An ice detection system must be provided to alert the flightcrew each time the ice protection system must be cycled.
(h) Procedures for operation of the ice protection system, including activation and deactivation, must be established and documented in the Airplane Flight Manual.

§ 25.1421 Megaphones.
If a megaphone is installed, a restraining means must be provided that is capable of restraining the megaphone when it is subjected to the ultimate inertia forces specified in §25.561(b)(3).

[Amdt. 25–41, 42 FR 36970, July 18, 1977]

§ 25.1423 Public address system.
A public address system required by this chapter must—
(a) Be powerable when the aircraft is in flight or stopped on the ground, after the shutdown or failure of all engines and auxiliary power units, or the disconnection or failure of all power sources dependent on their continued operation, for—
(1) A time duration of at least 10 minutes, including an aggregate time duration of at least 5 minutes of announcements made by flight and cabin crewmembers, considering all other loads which may remain powered by the same source when all other power sources are inoperative; and
(2) An additional time duration in its standby state appropriate or required for any other loads that are powered by the same source and that are essential