§ 100.23 Geologic and seismic siting criteria.

This section sets forth the principal geologic and seismic considerations that guide the Commission in its evaluation of the suitability of a proposed site and adequacy of the design bases established in consideration of the geologic and seismic characteristics of the proposed site, such that, there is a reasonable assurance that a nuclear power plant can be constructed and operated at the proposed site without undue risk to the health and safety of the public. Applications to engineering design are contained in appendix S to part 50 of this chapter.

(a) Applicability. The requirements in paragraphs (c) and (d) of this section apply to applicants for an early site permit or combined license pursuant to Part 52 of this chapter, or a construction permit or operating license for a nuclear power plant pursuant to Part 50 of this chapter on or after January 10, 1997. However, for either an operating license applicant or holder whose construction permit was issued prior to January 10, 1997, the seismic and geologic siting criteria in Appendix A to Part 100 of this chapter continues to apply.

(b) Commencement of construction. The investigations required in paragraph (c) of this section are not considered “construction” as defined in 10 CFR 50.10(a).

(c) Geological, seismological, and engineering characteristics. The geological, seismological, and engineering characteristics of a site and its environs must be investigated in sufficient scope and detail to permit an adequate evaluation of the proposed site, to provide sufficient information to support evaluations performed to arrive at estimates of the Safe Shutdown Earthquake Ground Motion, and to permit adequate engineering solutions to actual or potential geologic and seismic effects at the proposed site. The size of the region to be investigated and the type of data pertinent to the investigations must be determined based on the nature of the region surrounding the proposed site. Data on the vibratory ground motion, tectonic surface deformation, nontectonic deformation, earthquake recurrence rates, fault geometry and slip rates, site foundation material, and seismically induced floods and water waves must be obtained by reviewing pertinent literature and carrying out field investigations. However, each applicant shall investigate all geologic and seismic factors (for example, volcanic activity) that may affect the design and operation of the proposed nuclear power plant irrespective of whether such factors are explicitly included in this section.

(d) Geologic and seismic siting factors. The geologic and seismic siting factors considered for design must include a determination of the Safe Shutdown Earthquake Ground Motion for the site, the potential for surface tectonic and nontectonic deformations, the design bases for seismically induced floods and water waves, and other design conditions as stated in paragraph (d)(4) of this section.

(1) Determination of the Safe Shutdown Earthquake Ground Motion. The Safe Shutdown Earthquake Ground Motion for the site is characterized by both horizontal and vertical free-field ground motion response spectra at the free ground surface. The Safe Shutdown Earthquake Ground Motion for the site is determined considering the results of the investigations required by paragraph (c) of this section. Uncertainties are inherent in such estimates. These uncertainties must be addressed through an appropriate analysis, such as a probabilistic seismic hazard analysis or suitable sensitivity analyses. Paragraph IV(a)(1) of appendix S to part 50 of this chapter defines the minimum Safe Shutdown Earthquake Ground Motion for design.

(2) Determination of the potential for surface tectonic and nontectonic deformations. Sufficient geological, seismological, and geophysical data must be provided to clearly establish whether there is a potential for surface deformation.

(3) Determination of design bases for seismically induced floods and water waves. The size of seismically induced species, etc. Some of these factors are included in, or impact, the other criteria included in this section.
APPENDIX A TO PART 100—SEISMIC AND GEOLOGIC SITING CRITERIA FOR NUCLEAR POWER PLANTS

I. PURPOSE

General Design Criterion 2 of Appendix A to part 50 of this chapter requires that nuclear power plant structures, systems, and components important to safety be designed to withstand the effects of natural phenomena such as earthquakes, tornadoes, hurricanes, floods, tsunami, and seiches without loss of capability to perform their safety functions. It is the purpose of these criteria to set forth the principal seismic and geologic considerations which guide the Commission in its evaluation of the suitability of proposed sites for nuclear power plants and the suitability of the plant design bases established in consideration of the seismic and geologic characteristics of the proposed sites.

These criteria are based on the limited geophysical and geological information available to date concerning faults and earthquake occurrence and effect. They will be revised as necessary when more complete information becomes available.

II. SCOPE

These criteria, which apply to nuclear power plants, describe the nature of the investigations required to obtain the geologic and seismic data necessary to determine site suitability and provide reasonable assurance that a nuclear power plant can be constructed and operated at a proposed site without undue risk to the health and safety of the public. They describe procedures for determining the quantitative vibratory ground motion design basis at a site due to earthquakes and describe information needed to determine whether and to what extent a nuclear power plant need be designed to withstand the effects of surface faulting. Other geologic and seismic factors required to be taken into account in the siting and design of nuclear power plants are identified.

The investigations described in this appendix are within the scope of investigations permitted by §30.10(o)(1) of this chapter.

Each applicant for a construction permit shall investigate all seismic and geologic factors that may affect the design and operation of the proposed nuclear power plant irrespective of whether such factors are explicitly included in these criteria. Additional investigations and/or more conservative determinations than those included in these criteria may be required for sites located in areas having complex geology or in areas of high seismicity. If an applicant believes that the particular seismology and geology of a site indicate that some of these criteria, or portions thereof, need not be satisfied, the specific sections of these criteria should be identified in the license application, and supporting data to justify clearly such departures should be presented.

These criteria do not address investigations of volcanic phenomena required for sites located in areas of volcanic activity. Investigations of the volcanic aspects of such sites will be determined on a case-by-case basis.

III. DEFINITIONS

As used in these criteria:

(a) The magnitude of an earthquake is a measure of the size of an earthquake and is related to the energy released in the form of seismic waves. Magnitude means the numerical value on the Richter scale.

(b) The intensity of an earthquake is a measure of its effects on man, on man-built structures, and on the earth's surface at a particular location. Intensity means the numerical value on the Modified Mercalli scale.

(c) The Safe Shutdown Earthquake is that earthquake which is based upon an evaluation of the maximum earthquake potential considering the regional and local geology and seismology and specific characteristics of local subsurface material. It is that earthquake which produces the maximum vibratory ground motion for which certain structures, systems, and components are designed to remain functional. These structures, systems, and components are those necessary to assure:

(1) The integrity of the reactor coolant pressure boundary.

1The Safe Shutdown Earthquake defines that earthquake which has commonly been referred to as the Design Basis Earthquake.