S. 99

To promote the production of molybdenum-99 in the United States for medical isotope production, and to condition and phase out the export of highly enriched uranium for the production of medical isotopes.

IN THE SENATE OF THE UNITED STATES

JANUARY 25 (legislative day, JANUARY 5), 2011

Mr. BINGAMAN (for himself and Ms. MURKOWSKI) introduced the following bill; which was read twice and referred to the Committee on Energy and Natural Resources

A BILL

To promote the production of molybdenum-99 in the United States for medical isotope production, and to condition and phase out the export of highly enriched uranium for the production of medical isotopes.

Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled,

SECTION 1. SHORT TITLE.

This Act may be cited as the “American Medical Isotopes Production Act of 2011”.

SEC. 2. IMPROVING THE RELIABILITY OF DOMESTIC MEDICAL ISOTOPE SUPPLY.

(a) MEDICAL ISOTOPE DEVELOPMENT PROJECTS.—
(1) IN GENERAL.—The Secretary of Energy shall establish a technology-neutral program—

(A) to evaluate and support projects for the production in the United States, without the use of highly enriched uranium, of significant quantities of molybdenum-99 for medical uses;

(B) to be carried out in cooperation with non-Federal entities; and

(C) the costs of which shall be shared in accordance with section 988 of the Energy Policy Act of 2005 (42 U.S.C. 16352).

(2) CRITERIA.—Projects shall be judged against the following primary criteria:

(A) The length of time necessary for the proposed project to begin production of molybdenum-99 for medical uses within the United States.

(B) The capability of the proposed project to produce a significant percentage of United States demand for molybdenum-99 for medical uses.

(C) The cost of the proposed project.

(3) EXEMPTION.—An existing reactor fueled with highly enriched uranium shall not be disquali-
fied from the program if the Secretary of Energy de-
termines that—

(A) there is no alternative nuclear reactor
fuel, enriched in the isotope U–235 to less than
20 percent, that can be used in that reactor;

(B) the reactor operator has provided as-
surances that, whenever an alternative nuclear
reactor fuel, enriched in the isotope U–235 to
less than 20 percent, can be used in that reac-
tor, it will use that alternative in lieu of highly
enriched uranium; and

(C) the reactor operator has provided a
current report on the status of its efforts to
convert the reactor to an alternative nuclear re-
actor fuel enriched in the isotope U–235 to less
than 20 percent, and an anticipated schedule
for completion of conversion.

(4) PUBLIC PARTICIPATION AND REVIEW.—The
Secretary of Energy shall—

(A) develop a program plan and annually
update the program plan through public work-
shops; and

(B) use the Nuclear Science Advisory
Committee to conduct annual reviews of the
progress made in achieving the program goals.
There are authorized to be appropriated to the Secretary of Energy for carrying out the program under paragraph (1) $143,000,000 for the period encompassing fiscal years 2011 through 2014.

(b) Development Assistance.—The Secretary of Energy shall establish a program to provide assistance for—

(1) the development of fuels, targets, and processes for domestic molybdenum-99 production that do not use highly enriched uranium; and

(2) commercial operations using the fuels, targets, and processes described in paragraph (1).

(c) Uranium Lease and Take Back.—The Secretary of Energy shall establish a program to make low enriched uranium available, through lease contracts, for irradiation for the production of molybdenum-99 for medical uses. The lease contracts shall provide for the Secretary to retain responsibility for the final disposition of radioactive waste created by the irradiation, processing, or purification of leased uranium. The lease contracts shall also provide for compensation in cash amounts equivalent to prevailing market rates for the sale of comparable uranium products and for compensation in cash amounts equivalent to the net present value of the cost to the Fed-
eral Government for the final disposition of such radio-
active waste, provided that the discount rate used to deter-
mine the net present value of such costs shall be no great-
er than the average interest rate on marketable Treasury
securities. The Secretary shall not barter or otherwise sell
or transfer uranium in any form in exchange for services
related to final disposition of the radioactive waste from
such leased uranium.

SEC. 3. EXPORTS.

Section 134 of the Atomic Energy Act of 1954 (42
U.S.C. 2160d) is amended by striking subsections b. and
c. and inserting in lieu thereof the following:

“b. Effective 7 years after the date of enactment of
the American Medical Isotopes Production Act of 2011,
the Commission may not issue a license for the export of
highly enriched uranium from the United States for the
purposes of medical isotope production.

“c. The period referred to in subsection b. may be
extended for no more than 6 years if, no earlier than 6
years after the date of enactment of the American Medical
Isotopes Production Act of 2011, the Secretary of Energy
certifies to the Committee on Energy and Commerce of
the House of Representatives and the Committee on En-
ergy and Natural Resources of the Senate that—
“(1) there is insufficient global supply of molybdenum-99 produced without the use of highly enriched uranium available to satisfy the domestic United States market; and

“(2) the export of United States-origin highly enriched uranium for the purposes of medical isotope production is the most effective temporary means to increase the supply of molybdenum-99 to the domestic United States market.

“d. To ensure public review and comment, the development of the certification described in subsection c. shall be carried out through announcement in the Federal Register.

“e. At any time after the restriction of export licenses provided for in subsection b. becomes effective, if there is a critical shortage in the supply of molybdenum-99 available to satisfy the domestic United States medical isotope needs, the restriction of export licenses may be suspended for a period of no more than 12 months, if—

“(1) the Secretary of Energy certifies to the Congress that the export of United States-origin highly enriched uranium for the purposes of medical isotope production is the only effective temporary means to increase the supply of molybdenum-99 nec-
necessary to meet United States medical isotope needs during that period; and

“(2) the Congress enacts a Joint Resolution approving the temporary suspension of the restriction of export licenses.

“f. As used in this section—

“(1) the term ‘alternative nuclear reactor fuel or target’ means a nuclear reactor fuel or target which is enriched to less than 20 percent in the isotope U–235;

“(2) the term ‘highly enriched uranium’ means uranium enriched to 20 percent or more in the isotope U–235;

“(3) a fuel or target ‘can be used’ in a nuclear research or test reactor if—

“(A) the fuel or target has been qualified by the Reduced Enrichment Research and Test Reactor Program of the Department of Energy; and

“(B) use of the fuel or target will permit the large majority of ongoing and planned experiments and isotope production to be conducted in the reactor without a large percentage increase in the total cost of operating the reactor; and
“(4) the term ‘medical isotope’ includes molybdenum-99, iodine-131, xenon-133, and other radioactive materials used to produce a radiopharmaceutical for diagnostic, therapeutic procedures or for research and development.”.

SEC. 4. REPORT ON DISPOSITION OF EXPORTS.

Not later than 1 year after the date of the enactment of this Act, the Chairman of the Nuclear Regulatory Commission, after consulting with other relevant agencies, shall submit to the Congress a report detailing the current disposition of previous United States exports of highly enriched uranium, including—

(1) their location;

(2) whether they are irradiated;

(3) whether they have been used for the purpose stated in their export license;

(4) whether they have been used for an alternative purpose and, if so, whether such alternative purpose has been explicitly approved by the Commission;

(5) the year of export, and reimportation, if applicable;

(6) their current physical and chemical forms; and
whether they are being stored in a manner which adequately protects against theft and unauthorized access.

SEC. 5. DOMESTIC MEDICAL ISOTOPE PRODUCTION.

(a) IN GENERAL.—Chapter 10 of the Atomic Energy Act of 1954 (42 U.S.C. 2131 et seq.) is amended by adding at the end the following new section:

"SEC. 112. DOMESTIC MEDICAL ISOTOPE PRODUCTION.—a. The Commission may issue a license, or grant an amendment to an existing license, for the use in the United States of highly enriched uranium as a target for medical isotope production in a nuclear reactor, only if, in addition to any other requirement of this Act—

"(1) the Commission determines that—

"(A) there is no alternative medical isotope production target, enriched in the isotope U–235 to less than 20 percent, that can be used in that reactor; and

"(B) the proposed recipient of the medical isotope production target has provided assurances that, whenever an alternative medical isotope production target can be used in that reactor, it will use that alternative in lieu of highly enriched uranium; and
“(2) the Secretary of Energy has certified that the United States Government is actively supporting the development of an alternative medical isotope production target that can be used in that reactor.

“b. As used in this section—

“(1) the term ‘alternative medical isotope production target’ means a nuclear reactor target which is enriched to less than 20 percent of the isotope U–235;

“(2) a target ‘can be used’ in a nuclear research or test reactor if—

“(A) the target has been qualified by the Reduced Enrichment Research and Test Reactor Program of the Department of Energy; and

“(B) use of the target will permit the large majority of ongoing and planned experiments and isotope production to be conducted in the reactor without a large percentage increase in the total cost of operating the reactor;

“(3) the term ‘highly enriched uranium’ means uranium enriched to 20 percent or more in the isotope U–235; and

“(4) the term ‘medical isotope’ includes molybdenum-99, iodine-131, xenon-133, and other radioactive materials used to produce a radiopharma-
ceutical for diagnostic, therapeutic procedures or for research and development.”.

(b) TABLE OF CONTENTS.—The table of contents for the Atomic Energy Act of 1954 is amended by inserting the following new item at the end of the items relating to chapter 10 of title I:

“Sec. 112. Domestic medical isotope production.”.

SEC. 6. ANNUAL DEPARTMENT OF ENERGY REPORTS.

The Secretary of Energy shall report to Congress no later than one year after the date of enactment of this Act, and annually thereafter for 5 years, on Department of Energy actions to support the production in the United States, without the use of highly enriched uranium, of molybdenum-99 for medical uses. These reports shall include the following:

(1) For medical isotope development projects—

(A) the names of any recipients of Department of Energy support under section 2 of this Act;

(B) the amount of Department of Energy funding committed to each project;

(C) the milestones expected to be reached for each project during the year for which support is provided;
(D) how each project is expected to support the increased production of molybdenum-99 for medical uses;

(E) the findings of the evaluation of projects under section 2(a)(2) of this Act; and

(F) the ultimate use of any Department of Energy funds used to support projects under section 2 of this Act.

(2) A description of actions taken in the previous year by the Secretary of Energy to ensure the safe disposition of radioactive waste from used molybdenum-99 targets.

SEC. 7. NATIONAL ACADEMY OF SCIENCES REPORT.

The Secretary of Energy shall enter into an arrangement with the National Academy of Sciences to conduct a study of the state of molybdenum-99 production and utilization, to be provided to the Congress not later than 5 years after the date of enactment of this Act. This report shall include the following:

(1) For molybdenum-99 production—

(A) a list of all facilities in the world producing molybdenum-99 for medical uses, including an indication of whether these facilities use highly enriched uranium in any way;
(B) a review of international production of molybdenum-99 over the previous 5 years, including—

(i) whether any new production was brought online;

(ii) whether any facilities halted production unexpectedly; and

(iii) whether any facilities used for production were decommissioned or otherwise permanently removed from service; and

(C) an assessment of progress made in the previous 5 years toward establishing domestic production of molybdenum-99 for medical uses, including the extent to which other medical isotopes that have been produced with molybdenum-99, such as iodine-131 and xenon-133, are being used for medical purposes.

(2) An assessment of the progress made by the Department of Energy and others to eliminate all worldwide use of highly enriched uranium in reactor fuel, reactor targets, and medical isotope production facilities.

SEC. 8. DEFINITIONS.

In this Act the following definitions apply:
(1) **HIGHLY ENRICHED URANIUM.**—The term “highly enriched uranium” means uranium enriched to 20 percent or greater in the isotope U–235.

(2) **LOW ENRICHED URANIUM.**—The term “low enriched uranium” means uranium enriched to less than 20 percent in the isotope U–235.

SEC. 9. BUDGETARY EFFECTS.

The budgetary effects of this Act, for the purpose of complying with the Statutory Pay-As-You-Go Act of 2010, shall be determined by reference to the latest statement titled “Budgetary Effects of PAYGO Legislation” for this Act, submitted for printing in the Congressional Record by the Chairman of the Senate Budget Committee, provided that such statement has been submitted prior to the vote on passage.